, Volume 47, Issue 8, pp 49–54 | Cite as

The chronology of a microgravity spaoeflight experiment: IDGE

  • Martin E. Glicksman
  • Matthew B. Koss
  • Edward A. Winsa
Feature Overview


The evolution of the Isothermal Dendritic Growth Experiment (IDGE), which was performed aboard the space shuttle Columbia, provides an example of how a space flight experiment is proposed, developed, built, and operated. To illustrate this example, this article traces the key developments of the IDGE from the initial concept to the actual space flight mission.


Dendritic Growth Space Flight Space Shuttle Flight Experiment Kennedy Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.E. Glicksman and S.P. Marsh, “The Dendrite,” Handbook of Crystal Growth, vol 1b, ed. D.J.T. Hurle (Amsterdam, Netherlands: Elsevier Science Publishers B.V., 1993), p. 1077.Google Scholar
  2. 2.
    G.P. Ivantsov, Dokl. Akad. Nauk, USSR, 58 (1947), p. 56.Google Scholar
  3. 3.
    M.E. Glicksman, R.J. Schaefer, and J.D. Ayers, Met. Trans. A, 7A (1976), p. 1747.Google Scholar
  4. 4.
    J.S. Langer and H. Muller-Krumbhaar, Acta Metall., 26 (1978), pp. 1681, 1689, and 1697.Google Scholar
  5. 5.
    D. Kessler, J. Koplik, and H. Levine, Phys. Rev. A, 34 (1986), p. 4980.Google Scholar
  6. 6.
    Y. Miyata, M.E. Glicksman, and T.H. Tirmizi, J. Crystal Growth, 112 (1991), p. 683.Google Scholar
  7. 7.
    E.A. Brener and V.I. Mel’nikov, Adv. Phys., 40 (1991), p. 53.Google Scholar
  8. 8.
    NASA Research Announcement, “Microgravity Materials Science: Research and Flight Experiment Opportunities,” NRA-94-OLMSA-0 (December, 12, 1994).Google Scholar
  9. 9.
    S.C. Huang and M.E. Glicksman, Acta Metall., 29 (1981), p. 701, and, M.E. Glicksman and S.C. Huang, Convective Transport and Instability Phenomena, ed. Zierep and Ortel, Karlsruhe, (1982), p. 557.Google Scholar
  10. 10.
    R. Ananth and W.N. Gill, Chemical Eng. Comm., 68 (1988), p. 1.Google Scholar
  11. 11.
    R. Ananth and W.N. Gill, J. Crystal Growth, 91 (1988), p. 587.Google Scholar
  12. 12.
    R. Ananth and W.N. Gill, J. Crystal Growth, 108 (1991), p. 173.Google Scholar
  13. 13.
    J. Robert Schrieffer, review of Microgravity Science and Applications Flight Programs (University Space Research Association, Washington, D.C., 1987).Google Scholar
  14. 14.
    E.A. Winsa et al., Reprint AIAA 95-0610, 33rd Aerospace and Sciences Meeting and Exhibit, Reno NV January 1995).Google Scholar
  15. 15.
    M.B. Koss et al., 7th International Symposium on Experimental Methods for Microgravity Science, ed. R.A. Schiffman (Warrendale, PA: TMS, in press).Google Scholar
  16. 16.
    M.E. Glicksman, M.B. Koss, and E.A. Winsa, Phys. Rev. Lett., 73 (1994), p. 573.Google Scholar
  17. 17.
    M.E. Glicksman et al., Adv. Space Res., 16(7) (1995), p. 181.Google Scholar
  18. 18.
    M.E. Glicksman et al., Advances in Casting, Welding and Advanced Solidification Processes VII (Warrendale, PA: TMS}, in press).Google Scholar

Copyright information

© TMS 1995

Authors and Affiliations

  • Martin E. Glicksman
    • 1
  • Matthew B. Koss
    • 1
  • Edward A. Winsa
    • 2
  1. 1.Materials and Chemical EngineeringRensselaer Polytechnic InstituteUSA
  2. 2.NASA Lewis Research CenterUSA

Personalised recommendations