Advertisement

JOM

, Volume 48, Issue 1, pp 48–52 | Cite as

Joining silicon nitride to itself and to metals

  • Stathis D. Peteves
  • Giacomo Ceccone
  • Mervi Paulasto
  • Vassilis Stamos
  • Pascal J. Yvon
Refractory Metal & Material Overview

Abstract

This article reviews the progress that has been made in developing and applying joining techniques for Si3N4 and discusses our understanding of the influence of process selection on the materials science of the formation and properties of joints. High-performance Si3N4 joints can be produced, but it is clear that much work remains to be done before the use of such joints in hot-stressed applications can be disregarded as a problem.

Keywords

Weld Pool Filler Metal Joint Strength Ceramic Surface Braze Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.H. Heuer and V.L.K. Lou, J. Am. Ceram. Soc., 73 (1990), pp. 2789–2805.Google Scholar
  2. 2.
    I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances (Berlin, Germany: Springer-Verlag, 1973).Google Scholar
  3. 3.
    JANAF Thermochemical Tables, 2nd ed. (Washington, D.C.: NBS, 1971).Google Scholar
  4. 4.
    M.G. Nicholas, Designing Interfaces for Technological Applications: Ceramic-Ceramic and Ceramic-Metal Joining, ed. S.D. Peteves (London: Elsevier Appl. Sci., 1989), pp. 49–76.Google Scholar
  5. 5.
    Y.V. Naidich, Progr. Surf Membrane Sci., 14 (1983), pp. 354–385.Google Scholar
  6. 6.
    M.G. Nicholas, Br. Ceram. Trans. J., 85 (1986), pp. 144–146.Google Scholar
  7. 7.
    H. Mizuhara and K. Mally, Weld J., 64 (10) (1985), pp. 27–32.Google Scholar
  8. 8.
    A.J. Moorhead and H. Keating, Weld. J., 65 (10) (1986), pp. 17–31.Google Scholar
  9. 9.
    M. Ito and M. Taniguchi, Designing Ceramic Interfaces II: Understanding and Tailoring Interfaces for Coating, Composite and Joining Applications, ed. S.D. Peteves (Luxembourg: CEC, DGXIII, 1993), pp. 205–220.Google Scholar
  10. 10.
    Y. Hattori et al., Ceramic Materials and Components for Engines, ed. W. Bunk and H. Hausner (Germany: DKG, 1986), pp. 165–172.Google Scholar
  11. 11.
    Y. Tajima, Silicon Nitride Ceramics, Scientific and Technological Applications, ed. L.W. Chen et al. (PittSburgh, PA: MRS, 1993), pp. 189–196.Google Scholar
  12. 12.
    M. Ito, N. Ishida, and N. Kato, SAE technical paper no. 880704 (Warrendale, PA: SAE, 1988).Google Scholar
  13. 13.
    M. Ito and N. Kato, Joining Ceramics, Glass and Metal, ed. H. Krappitz and H.A. Schaeffer (Frankfurt, Germany: DGG, 1993), pp. 321–330.Google Scholar
  14. 14.
    M. Taniguchi et al., SAE technical paper no. 931934 (Warrendale, PA: SAE, 1993).Google Scholar
  15. 15.
    I.A. Buelow, Ceramic Materials and Components for Engines, ed. R. Carisson, T. Johansson, and L. Kahlman (London: Elsevier Appl. Sci., 1992), pp. 324–331.Google Scholar
  16. 16.
    E. Seitz, Advanced Engineering with Ceramics, ed. R. Morrell (Stoke-on-Trent, U.K.: Institute of Ceramics, 1990), pp. 71–83.Google Scholar
  17. 17.
    J.G. Heinrich and H. Kromer, Ber. DKG, 72 (4) (1995), pp. 167–175.Google Scholar
  18. 18.
    T. Suga, Designing Interfaces for Technological Applications: Ceramic-Ceramic and Ceramic-Metal Joining, ed. S.D. Peteves (London: Elsevier Appl. Sci., 1989), pp. 247–263.Google Scholar
  19. 19.
    X.S. Ning et al., J. Mater. Sci., 24 (1989), pp. 2879–2883.Google Scholar
  20. 20.
    K. Suganuma etal., Adv. Ceram. Mater., 1 (1986), pp. 356–360.Google Scholar
  21. 21.
    M. Naka, M. Kubo, and I. Okamoto, J. Mater. Sci., 22 (1987), pp. 4417–4m.Google Scholar
  22. 22.
    A. Kohno, T. Yamada, and K. Yokoi, J. Jpn. Inst. Met., 49 (1985), pp. 876–883.Google Scholar
  23. 23.
    R.E. Loehman et al., J. Am. Ceram. Soc., 73 (3) (1990), pp. 552–558.Google Scholar
  24. 24.
    S.I. Tanaka, Metal Ceramic Joints, ed. M. Doyama et al. (Pittsburgh, PA: MRS, 1989), pp. 91–96.Google Scholar
  25. 25.
    D.O. Patten, M.L. Torti, and P. Charreyron, Ceram. Eng. Sci. Proc., 10 (11–12) (1989), pp. 1866–1878.Google Scholar
  26. 26.
    S.D. Peteves, Ceramics: Charting the Future, ed. P. Vincenzini (Faenza, Italy: Techna Publishers Srl, 1995), pp. 2179–2190.Google Scholar
  27. 27.
    S. Kang et al., Ceram. Bull., 68 (1989), pp. 1608–17.Google Scholar
  28. 28.
    W. Tillmann, “Aspekte des Aktivlotens Nichtoxidischer Ingenieurkeramiken,” Ph.D. thesis, Aachen University of Technology (1992).Google Scholar
  29. 29.
    M.L. Santella, Ceramic Technology for Advanced Heat Engines Project, ORNL/TM-11859 (OakRidge, TN: ORNL, 1991), pp. 232–236.Google Scholar
  30. 30.
    E. Lugscheider, W. Tillmann, and W. Weise, Joining of Ceramic, Glass and Metal, ed. H. Krappitz and H.A. Schaeffer (Frankfurt, Germany: DGG, 1993), pp. 99–107.Google Scholar
  31. 31.
    G. Ceccone and S.D. Peteves, Third Euro-Ceramics, vol. 3, ed. P. Duran and J.F. Fernandez (Spain: Faenza Ed. Iberica, 1993), pp. 337–342.Google Scholar
  32. 32.
    K. Suganuma, K. Niihara, and T. Fujita, J. Less Comm. Met., 158 (1990), pp. 59–69.Google Scholar
  33. 33.
    Y. Iino, J. Mater. Sci. Lett., 10 (1990), pp. 104–106.Google Scholar
  34. 34.
    Y. Matsushila and B. Derby, Euro-Ceramics II, vol. 1, ed. G. Ziegler and H. Hausner (Koln, Germany: DKG, 1992), pp. 69–99.Google Scholar
  35. 35.
    M. Nakamura and S.D. Peleves, J. Am. Ceram. Soc., 73 (5) (1990), pp. 1221–1227.Google Scholar
  36. 36.
    K. Suganuma Y. Miyamoto, and M. Koizumi, Ann. Rev. Mater. Sci., 18 (1988), pp. 47–73.Google Scholar
  37. 37.
    S.D. Peteves and K. Suganuma, Ceram. Trans., 35 (1993), pp. 229–238.Google Scholar
  38. 38.
    M. Courbiere, M. Kinoshila, and I. Kondoh, Joining Ceramics, Glass and Metal, ed. W. Kraft (Oberursel, Germany: DGM, 1989), pp. 95–102.Google Scholar
  39. 39.
    M. Koizumi et al., High Tech Ceramics, ed. P. Vincenzini (Amsterdam, Netherlands: Elsevier, 1987), pp. 1033–1042.Google Scholar
  40. 40.
    K. Suganuma et al., J. Ceram. Soc. Jpn., 96 (11) (1988), pp. 1051–1056.Google Scholar
  41. 41.
    S.M. Johnson and D.J. Rowcliffe, J. Am. Ceram. Soc., 68 (9) (1985), pp. 468–472.Google Scholar
  42. 42.
    P.F. Becher and S.A. Halen, Ceram. Bull., 58 (9) (1979), pp. 582–583.Google Scholar
  43. 43.
    M. Iwamoto, N. Umezaki, and Y. Haibara, J. Ceram. Soc. Jpn., 94 (8) (1985), pp. 184–190.Google Scholar
  44. 44.
    C.H. Bales et al., Ceram. Bull., 69 (3) (1990), pp. 350–356.Google Scholar
  45. 45.
    H. Fukushima, T. Yamanaka, and M. Matsui, Microwave Processing of Materials, vol. 124, ed. W.H. Sutton, M.H. Brooks, and I.J. Chabinsky (Pittsburgh, PA: MRS, 1988), pp. 267–272.Google Scholar
  46. 46.
    A. Bellosi and L. Esposilo, Fourth Euro-Ceramics, vol. 9, ed. B.S. Tranchina and A. Bellosi (Faenza, Italy: Gruppo Ed. Faenza Editr., 1995), pp. 201–212.Google Scholar
  47. 47.
    B.J. Dalgleish et al., Scripta Metall. et Mater., 31 (8) (1994), pp. 1043–1048.Google Scholar
  48. 48.
    G. Ceccone et al., Acta Metall. & Materiala (March 1995), in press.Google Scholar
  49. 49.
    M.G. Nicholas et al., J. Mater. Sci., 25 (1990), pp. 2679–2689.Google Scholar
  50. 50.
    A.P. Tomsia, J.A. Pask, and R.E. Loehman, Ceram. Eng. Sci. Proc., 10 (11–12) (1989), pp. 1631–1654.Google Scholar
  51. 51.
    L. Ljungberg and R. Warren, Ceram. Eng. Sci. Proc., 10 (11–12) (1989), pp. 1655–1666.Google Scholar
  52. 52.
    R.E. Loehman, in Ref. 24, pp. 3–16.Google Scholar
  53. 53.
    X.S. Ning et al., Phil. Mag. Lett., 55 (1987), pp. 93–97.Google Scholar
  54. 54.
    R.K. Brow and R.E. Loehrnan, Ceram. Eng. Sci. Proc., 10 (11–12) (1989), pp. 1685–1695.Google Scholar
  55. 55.
    V. Laurenl et al., Acta Metall., 36 (7) (1988), pp. 1797–1703.Google Scholar
  56. 56.
    G. Economos and W.O. Kingery, J Am. Ceram. Soc., 36 (1953), pp. 403–409.Google Scholar
  57. 57.
    M. Humenik and W.D. Kingery, J. Am. Ceram. Soc., 37 (1954), pp. 18–23.Google Scholar
  58. 58.
    H. Mizuhara, E. Huebel, and T. Oyama, Acta Metall., 68 (1989), pp. 1591–1599.Google Scholar
  59. 59.
    “Active Brazing Filler Melals,” WESGO Technical Ceramics and Brazing Alloys, product liteerature, (Belmont, CA: Wesgo).Google Scholar
  60. 60.
    V.N. Eremenko, Y.I. Buyanov, and N.M. Panchenko, Porosh. Metall., 88 (1970), pp. 44–48.Google Scholar
  61. 61.
    Y.A. Chang, D. Goldberg, and J.P. Neumann, J. Phys. Chem. Ref. Data, 6 (1977), pp. 621~73.Google Scholar
  62. 62.
    M. Paulasto, F.J.J. van Loo, and J.K. Kivilahti, J. Alloys and Compounds, 220 (1995), pp. 136–141.Google Scholar
  63. 63.
    A.-P. Xian and Z.-Y. Si, J. Mater. Sci., 25 (1990), pp. 4483–4487.Google Scholar
  64. 64.
    T.W. Orent and R.A. Wagner, J. Vac. Sci. Technology B, 1 (1983), pp. 844–S49.Google Scholar
  65. 65.
    M. Paulasto and J.K. Kivilahti, Scripta Metall. et Mater., 32 (8) (1995), pp. 1209–1214.Google Scholar
  66. 66.
    M. Paulasto, F.J.J. van Loo, and J.K. Kiviiahti, J. Appl. Phys., 77 (1995), pp. 4412–4416.Google Scholar
  67. 67.
    A.H. Carlm, J. Am. Ceramic Society, 73 (1990), pp. 2764–2766.Google Scholar
  68. 68.
    H. Suematsu et al., Ceram. Trans., 35 (1993), pp. 59–68.Google Scholar
  69. 69.
    Y. Ishida, J. Wang, and T. Suga, Acta Metall. Mater., 40 (1992), pp. S289–S293.Google Scholar
  70. 70.
    R.R. Kapoor and T.W. Eagar, J. Am. Ceram. Soc., 72 (3) (1989), pp. 448–454.Google Scholar
  71. 71.
    S. Kang et al., Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engines Applications, ORNL/Sub/87-SB047C/1 (OakRidge, TN: ORNL, 1990) and S. Kang et al., Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engines Applications ORNL/Sub/90-SB047/2 (Oak Ridge, TN: ORNL, 1993).CrossRefGoogle Scholar
  72. 72.
    M.L. Santella, Advan. Ceram. Mater., 3 (5) (1988), pp. 457–462.Google Scholar
  73. 73.
    G. Cercone et al., J. Europ. Ceram. Soc., 15 (6) (1995), pp. 563–572.Google Scholar
  74. 74.
    S.D. Peleves and M.G. Nicholas, Metal-Ceramic Joining, ed. P. Kumar and V.A. Greenhut (Warrendale, PA: TMS, 1991), pp. 43–65.Google Scholar
  75. 75.
    A.M. Hadian, J.R. McDermid, and R.A.L. Drew, Ceram. Trans., 19 (1991), pp. 221–227.Google Scholar
  76. 76.
    T. Takashima, T. Yamamoto, and T. Narita, J. Ceram. Soc. Japan, Int., 100 (1992), pp. 913–917.Google Scholar
  77. 77.
    R.E. Loehman, M.L. Mecartney, and D.J. Rowcliffe, Silicon Nitride Joining, contract F49620-81-K-0001 (AFOSR, 1982).Google Scholar
  78. 78.
    S.M. Johnson and D.J. Rowcliffe, Silicon Nitride Joining, PYU2527 (Menlo Park, CA: SRI, 1985).Google Scholar
  79. 79.
    M.L. Mecartney, R. Sinclair, and R.E. Loehman, J. Am. Ceram. Soc., 68 (9) (1985), pp. 472–478.Google Scholar
  80. 80.
    T. Kaba, M. Shimad, and M. Koizumi, J. Am. Ceram. Soc., 66 (8) (1983), pp. C135–C136.Google Scholar
  81. 81.
    M.E. Mildberg et al., J. Mater. Sci., 22 (1987), pp. 2560–2568.Google Scholar
  82. 82.
    Y. Owada and K. Kobayashi, J. Ceram. Soc. Jpn., 92 (12) (1984), pp. 69–98.Google Scholar
  83. 83.
    P.A. Walls and M. Ueki, J. Am. Ceram. Soc., 78 (4) (1995), pp. 999–1005.Google Scholar
  84. 84.
    R.F. Coe, “Silicon Nitride Cladding,” British palent 1,333,541 (1973).Google Scholar
  85. 85.
    M.U. Goodyear and A. Ezis, Advances in Joining Technology, ed. J.J. Burke, A.E. Gorum, and A. Tarpinian (Chestnut Hill, MA: Brook Hill, 1976), pp. 113–153.Google Scholar
  86. 86.
    B. Derby and E.R. Wallach, Metal Science, 18 (1984), pp. 427–432.Google Scholar
  87. 87.
    M.E. Brito, “Solid State Reactions and Interfacial Structures in Si3N4-Ni and SiC-Ni Systems,” Ph.D. thesis, Nagoaka Univ., Nagoaka, Japan (1989).Google Scholar
  88. 88.
    S.D. Peteves, M. Moulaert, and M.G. Nicholas, Metall. Trans., 23A (1992), pp. 1773–1781.Google Scholar
  89. 89.
    P. Moretto et al., Designing Ceramic Interfaces II: Understanding and Tailoring Interfaces for Coating, Composite and Joining Applications, ed. S.D. Peleves (DGXIII, Luxembourg: CEC, 1993), pp. 519–538.Google Scholar
  90. 90.
    M. Nakamura and S.D. Peteves, Ceramics Today-Tomorrow′s Ceramics, ed. P. Vincenzini (Amsterdam: Elsevier Sci. Publ., 1991), pp. 1469–1477.Google Scholar
  91. 91.
    A.A. Kodentsov et al., Ceram. Trans., 35 (1993), pp. 135–144.Google Scholar
  92. 92.
    P. Rogi and J.C. Schuster, Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems (Materials Park, OH: ASM, 1992).Google Scholar
  93. 93.
    E. Heikinheimo et al., Acta Metall. Mater., 40 (1992), pp. S111–5119.Google Scholar
  94. 94.
    K. Suganuma et al., Ceram. Eng. Sci. Proc., 10 (11-12) (1989), pp. 1919–1933.Google Scholar
  95. 95.
    S.D. Peteves, “Reactive Joining of Ceramics” (Paper presented at the 97th American Ceramic Society Annual Meeting & Exposition, April 302May 3, 1995, Cincinnati, OH).Google Scholar
  96. 96.
    H.C. Cao, M.D. Thouless, and A.G. Evans, Acta Metall., 36 (8) (1988), pp. 2037–2046.Google Scholar
  97. 97.
    W.O. MacDonald and T.W. Eagar, Ann. Rev. Mat. Sci., 22 (1992), pp. 23–46.Google Scholar
  98. 98.
    D.S. Duvall, W.A. Owczarski, and D.F. Paulonis, Weld. J., 53 (1974), pp. 203S–214.Google Scholar
  99. 99.
    T.W. Eagar, Proc. Adv. Join. Newer Struc. Mat. (Oxford, U.K.: Pergamon Press, 1990), pp. 3–14.Google Scholar
  100. 100.
    J.T. Niemann and R.A. Garrett, Weld J., 8 (1974), pp. 351 5–360.Google Scholar
  101. 101.
    R.E. Loehrnan, Surfaces and Interfaces Ceramic and Ceramic-Metal Systems-Mat. Sci Res., vol. 14, ed. J.A. Pask and A.G. Evans (New York: Plenum Press, 1981), pp. 701–711.Google Scholar
  102. 102.
    M.L. Shalz et al., J. Mater. Sci., 28 (1993), pp. 1673–1684.Google Scholar
  103. 103.
    M.L. Shalz et al., J. Mater. Sci., 29 (1994), pp. 3200–3208.Google Scholar
  104. 104.
    M.L. Shalz et al., J. Mater. Sci., 29 (1994), pp. 3678–3690.Google Scholar
  105. 105.
    M. Paulasto, G. Ceccone, and S.D. Peteves, Fourth European Conference on Advanced Materials and Processes, vol. 1 (Milan, Italy: Associazione Italiana di Metallurgia, 1995), pp. 27–36.Google Scholar
  106. 106.
    G. Ceccone et al., Fourth Euro-Ceramics, vol. 9, ed. B.S. Tranchina and A. Bellosi (Faenza, Italy: Gruppo Ed. Faenza Edtr., 1995), pp. 101–108.Google Scholar
  107. 107.
    D.J. Dalgleish et al., Fourth Euro-Ceramics, vol. 9, ed. B.S. Tranchina and A. Bellosi (Faenza, Italy: Gruppo Ed. Faenza Edtr., 1995), pp. 93–100.Google Scholar
  108. 108.
    A.G. Foley and D.J. Andrews, GEC Alsthom Technical Review (13) (1994), pp. 49–63.Google Scholar
  109. 109.
    A.P Xian and Z.Y. Si, J. Mater. Sci. Lett., 10 (1991), pp. 1381–1383.Google Scholar
  110. 110.
    W.C. Lee, O. Kwon, and C.S. Kang, Ceram. Trans., 35 (1993), pp. 197–206.Google Scholar
  111. 111.
    K. Suganuma et al., Mater. Sci. Techn., 2 (1986), pp. 1156–1161.Google Scholar
  112. 112.
    M. Paulasto and E. Lugscheider, Joining Ceramics, Glass and Metal, ed. H. Krappitz and H.A. Schaeffer (Frankfurt, Germany: DGG, 1993), pp. 224–231.Google Scholar
  113. 113.
    J.H. Selverian and S. Kang, Ceram. Bull., 71 (10) (1992), pp. 1511–1520.Google Scholar
  114. 114.
    A. Wicker, Ph. Darbon, and F. Grivon, Ceramic Components for Engines, ed. S. Somiya et al. (Tokyo, Japan: KTK Scientific Publ., 1983), pp. 716–720.Google Scholar
  115. 115.
    T. Yamada et al., High Temp. and Technol., 5 (4) (1987), pp. 193–200.Google Scholar
  116. 116.
    Y. Nakao, K. Nishimoto, and K. Saida, Trans. Jpn. Weld. Inst., 21 (2) (1990), pp. 63–71.Google Scholar
  117. 117.
    Y. Ito, K. Kitamura, and M. Kanno, J. Mater. Sci., 28 (1993), pp. 50l4–5018.Google Scholar
  118. 118.
    T. Yamada et al., Fundamentals of Diffusion Bonding, ed. Y. Ishida (Amsterdam, Netherlands: Elsevier, 1987), pp. 489–500.Google Scholar
  119. 119.
    K. Miura, T. Narita, and T. Ishikawa, in Ref. 24, pp. 29–34.Google Scholar
  120. 120.
    A. Frisch et al., Acta Metall. Mater., 40 (1992), pp. 5361–5368.Google Scholar
  121. 121.
    A. Suzumura et al., in Ref. 24, pp. 269–274.Google Scholar
  122. 122.
    K. Miyazawa et al., in Ref. 24, pp. 275–80.Google Scholar
  123. 123.
    T. Suga, Y. Takahashi, and H. Takagi, Ceram. Trans., 35 (1993), pp. 323–331.Google Scholar
  124. 124.
    K. Suganuma, Joining and Adhesion of Advanced Inorganic Materials, ed. A.H. Carim, D.S. Schwartz, and R.S. Silberglitt (Pittsburgh, PA: MRS, 1993), pp. 209–220.Google Scholar
  125. 125.
    D. Munz, M.A. Sckuhr, and Y. Yang, J. Am. Ceram. Soc., 78 (2) (1995), pp. 285–290.Google Scholar
  126. 126.
    D. Munz and Y.Y. Yang,Trans. Jpn. Weld. Inst., 59 (1992), pp. 857–861.Google Scholar
  127. 127.
    J.J. Stephens, S.N. Burchett, and W.B. Jones, Advances in Electronic Packaging 1992, vol. 1, ed. W.T. Chen, (New York: ASME, 1992), pp. 363–372.Google Scholar
  128. 128.
    C.H. Hsueh and A.G. Evans,J. Am. Ceram. Soc., 68 (1985), pp. 241–248.Google Scholar
  129. 129.
    H.P. Kirchner, J.C. Conway, Jr., and A.E. Seagall, J. Am. Ceram. Soc., 70 (1987), pp. 104–109.Google Scholar
  130. 130.
    H. Kobayashi et al., Mater. Sci. Engr., Al43 (1991), pp. 91–102.Google Scholar
  131. 131.
    A. Levy, A. Tobin, and G. Busch, Metal-Ceramic Joining, ed. P. Kumar and V.A. Greenhut (Warrendale, PA: TMS, 1991), pp. 133–151.Google Scholar
  132. 132.
    R.L. Williamson, B.H. Rabin, and J.T. Drake, J. Appl. Phys., 74 (1993), pp. 1310–1320.Google Scholar
  133. 133.
    P.O. Charreycon, D.O. Patten, Jr., and B.J. Miller, Ceram. Engr. & Sci. Proc., 10 (1989), pp. 1801–1824.Google Scholar
  134. 134.
    J. Ahmad and B.S. Majumdar, Fracture Mechanics, ed. H.A. Ernst, A. Saxena, and D.L. McDowell (Philadelphia, PA: ASTM, 1992), pp. 590–614.Google Scholar
  135. 135.
    M. Naka, M. Kubo, and I. Okamoto, Trans. JWRI, 18 (2) (1989), pp. 33–36.Google Scholar
  136. 136.
    M.G. Nicholas and D.A. Mortimer, Mater. Sci. Tech., 1 (9) (1985), pp. 657–665.Google Scholar
  137. 137.
    Y. Zhou et al., Mater. Sci. Tech., 7 (1991), pp. 863–868.Google Scholar
  138. 138.
    J.H. Chen, et al, J. Mater. Sci., 28 (1993), pp. 2933–2942.Google Scholar
  139. 139.
    S.D. Peteves et al., Institute for Advanced Materials, JRC, EC, Petten, Netherlands, unpublished work.Google Scholar
  140. 140.
    P.J. Yvon, G. Ceccone, and S.D. Peteves, Fourth Euro-Ceramics, vol. 9, ed. B.S. Tranchina and A. Bellosi (Faenza, Italy: Gruppo Ed. Faenza Edtr., 1995), pp. 183–190.Google Scholar
  141. 141.
    M. Kurita, T. Kano, and T. Sato, Advances in X-Ray Analysis, vol. 34, ed. C.S. Barrett et al. (New York: Plenum Press, 1991), pp. 661–668.Google Scholar
  142. 142.
    S.I. Tanaka, in Ref. 24, pp. 125–130.Google Scholar
  143. 143.
    B.J. Dalgleish et al., Scipta Metall. et Mater., 31 (8) (1994), pp. 1109–1114.Google Scholar
  144. 144.
    A.G. Evanset al., Metall. Trans., 21A (9) (1990), pp. 2419–2429.Google Scholar
  145. 145.
    G. Elssner, Designing Interfaces for Technological Applications: Ceramic-Ceramic, Ceramic-Metal Joining, ed. S.D. Peteves (London: Elsevier Appl. Sci., 1989), pp. 77–104.Google Scholar

Copyright information

© TMS 1996

Authors and Affiliations

  • Stathis D. Peteves
    • 1
  • Giacomo Ceccone
    • 1
  • Mervi Paulasto
    • 1
  • Vassilis Stamos
    • 1
  • Pascal J. Yvon
    • 1
  1. 1.Joint Research Centre, European CommissionInstitute for Advanced MaterialsNetherlands

Personalised recommendations