Skip to main content
Log in

Electrochemical magnesium sensors for Use in aluminum processing

  • Aluminum
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Improvements in process control during the production and reclamation of aluminum alloys can be achieved through in-situ measurement of the magnesium content in the molten alloy. Electrochemical sensors are compact, can be inserted directly into molten aluminum, and produce a continuous direct current voltage proportional to the logarithm of the magnesium content. This article describes and compares electrochemical magnesium sensors based on three different electrolytes— MgCl2-CaCl2, MgF2, and β″ alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Tiwari, “Demagging Processes for Aluminum Alloy Scrap,” J. Metals, 34 (1982), pp. 54–58.

    CAS  Google Scholar 

  2. D.H. De Young, J.B. Moreland, and R. Mutharasan, “Closed Loop Melt Composition Control by In-Line Computer-Aided Alloying,” Light Metals 1995, ed. J. Evans (Warrendale, PA: TMS, 1995), pp. 840–850.

    Google Scholar 

  3. E.T. Turkdogan and R.J. Fruehan, “Review of Oxygen Sensors for Use in Steelmaking and of Deoxidation Equilibria,” Canadian Metallurgical Quarterly, 112 (1972), pp. 371–384.

    Google Scholar 

  4. K.S. Goto and K. Nagata, “A Review on Applications of Oxygen Sensors for Steel Industry,” Proc. of the Int. Sem. Solid State Ionic Devices, ed. B.V.R Chowdari and S. Radbakrishna (Singapore: World Scientific Publishing Co., 1988), pp. 205–223.

    Google Scholar 

  5. M. Iwase and Y. Waseda, “Recent Developments in Electrochemical Oxygen Sensors Used for Iron and Steelmaking,” High Temperature Materials and Processes, 72/3 (1986), pp. 123–131.

    Google Scholar 

  6. B.L. Tiwari and B.J. Howie, “Determination of Magnesium in Molten Aluminum Alloy Using an Electrochemical Sensor,” Light Metals 1989, ed. P.G. Campbell (Warrendale, PA: TMS, 1988), pp. 895–902.

    Google Scholar 

  7. R.L. Tiwari and B.J. Howie, “Electrochemical Probe for Measuring Magnesium Concentration in Molten Aluminum,” U.S. patent 4,601,810 (July 22, 1986).

    Google Scholar 

  8. J.W. Fergus and S. Hui, “Solid Electrolyte Sensor for Measuring Magnesium in Molten Aluminum,” Metall. Mater. Trans., 26B (1995).

    Google Scholar 

  9. S. Larose, A. Dubreuil, and A.D. Pelton, “Solid Electrolyte Probes for Magnesium, Calcium and Strontium in Molten Aluminum,” Solid State Ionics, 47 (1991), pp. 287–295.

    CAS  Google Scholar 

  10. K. Kiukkola and C. Wagoer, “Galvanic Cells for the Determination of the Standard Molar Free Energy of Formation of Metal Halides, Oxides and Sulfides at Elevated Temperatures,” J. Electrochem. Soc., 1045 (1957), pp. 308–316.

    Google Scholar 

  11. J.N. Pratt, “Applications of Solid Electrolytes in Thermodynamic Studies of Materials: A Review,” Metall. Trans. A, 21A (1990), pp. 1223–1250.

    CAS  Google Scholar 

  12. O. Kubaschewski, C.B. Alcock, and P.J. Spencer, Materials Thermochemistry, 6th edition (Oxford, England: Pergamon Press, 1993).

    Google Scholar 

  13. A.M. Azad et al., “Solid-State Gas Sensors: A Review,” J. Electrochem. Soc., 139 (12) (1992), pp. 3690–3704.

    CAS  Google Scholar 

  14. N. Yamazoe and N. Miura, “Environmental Gas Sensing,” Sensors and Actuators B, 20 (1994), pp. 95–102.

    CAS  Google Scholar 

  15. T.C. Wilder, “Method for Determining the Concentration of a Metal in an Alloy Melt,” U.S. patent 3,816,269 (June 11, 1974).

    Google Scholar 

  16. S. Srikanth and K.T. Jacob, “Thermodynamic Properties of Cu-Ni Alloys: Measurements and Assessment,” Mater. Sci. Tech., 5 (1989), pp. 427–434.

    CAS  Google Scholar 

  17. L.A. Pugliese and G.R. Fitterer, “Activities and Phase Boundaries in the Cr-Ni System Using a Solid Electrolyte Technique,” Metall. Trans., 1 (1970), pp. 1997–2002.

    CAS  Google Scholar 

  18. R.A. Rapp and F. Maak, “Thermodynamic Properties of Solid Copper-Nickel Alloys,” Acta Metall., 10 (1962), pp. 63–69.

    CAS  Google Scholar 

  19. B.C.H. Steele and C.B. Alcock, “Factors Influencing the Performance of Solid Electrolytes in High-Temperature Thermodynamic Measurements,” Trans. Metall. Soc. AIME, 233 (1965), pp. 1359–1367.

    CAS  Google Scholar 

  20. W.L. Worrell, “Measurements of the Thermodynamic Stabilities of the Niobium and Tantalum Oxides Using a High-Temperature Galvanic Cell,” Thermodynamics, 1 (1966), pp. 131–143.

    Google Scholar 

  21. C.B. Alcock, J.W. Fergos, and L. Wang, “The Electrolytic Properties of LaYO3, and LaAlO3, Doped with Alkaline-Earth Oxides,” Solid State Ionics, 51 (1992), pp. 291–295.

    CAS  Google Scholar 

  22. T. Ishihara, H. Matsuda, and Y. Takita, “Oxide Ion Conductivity in Doped NdAlO3 Perovskite-Type Oxides,” J. Electrochem. Soc., 141 (12) (1994), pp. 3444–3449.

    CAS  Google Scholar 

  23. T.D. Van, L. Segers, and R. Winand, “Determination of Thermodynamic Properties of Ternary Al-Cu-Zn Alloys by Electromotive Force Method,” J. Electrochem. Soc., 141 (4) (1994), pp. 927–933.

    Google Scholar 

  24. R.L. Tiwari, “Thermodynamic Properties of Liquid Al-Mg Alloys Measured by the EMF Method,” Metall. Trans. A, 18A (1987), pp. 1645–1651.

    CAS  Google Scholar 

  25. G.R. Befton and Y.K. Rao, “A Galvanic Cell Study of Activities in Mg-Al Liquid Alloys,” Trans. Metall. Soc. AIME, 245 (1969), pp. 2189–2193.

    Google Scholar 

  26. M.M. Tsyplakova and Kh.L. Strelets, “Study of the Thermodynamic Properties of the Magnesium-Aluminum System by the EMF Method,” J. Applied Chern. USSR, 42 (11) (1969), pp. 2354–2359.

    Google Scholar 

  27. E.E. Lukachenko and A.M. Pogodayev, “The Thermodynamic Functions of Liquid Mg-Al Alloys,” Russian Metallurgy (Metally), 5 (1971), pp. 69–72.

    Google Scholar 

  28. G.I. Batalin, E.A. Beloborodova, and V.A. Stukalo, “An Examination of the Thermodynamic Properties of Al-Si Melts,” Russian Metallurgy, 2 (1971), pp. 44–48.

    Google Scholar 

  29. V.V. Samokhval and A.A. Vecher, “Thermodynamic Properties of Solid Al-Mn Alloys,” Russian Metallurgy, 2 (1971), pp. 48–50.

    Google Scholar 

  30. A.M. Azad and O.M. Sreedbaran, “Factors Affecting the Functioning of Solid State Fluoride Galvanic Cells,” J. Appl. Electrochem., 19 (1989), pp. 475–484.

    CAS  Google Scholar 

  31. V.A. Levitskii, “Thermodynamics of Double Oxides: I. Some Aspects of the Use of CaF2-Type Electrolyte for Thermodynamic Study of Compounds Based on Oxides of Alkaline Earth Metals,” J. Solid State Chem., 25 (1978), pp. 9–22.

    CAS  Google Scholar 

  32. C.B. Alcock and B. Li, “A Fluoride-Based Composite Electrolyte,” Solid State Ionics, 39 (1990),,pp. 245–249.

    CAS  Google Scholar 

  33. S. Ragbavan et al., “Terminal Solid Solubilities at 900–l000°C in the Magnesium Oxide-Zinc Oxide System Measured Using a Magnesium Fluoride Solid-Electrolyte Galvauic Cell,” Thermochemica Acta, 189 (1991), pp. 151–158.

    Google Scholar 

  34. C.B. Alcock and B. Li, “Electrochemical Sensor for Determining the Level of a Certain Metal in Metals and Alloys,” U.S. patent 5,256,272.

  35. G.C. Farrington and J.L. Briant, “Fast Ionic Transport in Solids,” Science, 204 (4400) (1979), pp. 1371–1379.

    CAS  Google Scholar 

  36. A. Petric, A.D. Pelton, and M.-L. Sabroungi, “Electromotive Force Measurements in Molten Rb-Bi Alloys with a Rubidium β″-Alumina Electrolyte,” J. Electrochem. Soc., 2754 (11) (1988), pp. 2754–2760.

    Google Scholar 

  37. A. Dubrueil and A.D. Pelton, “Method and Apparatus for the Continuous Monitoring of Specific Elements in a Molten Substance Containing the Same,” U.S. patent 4,464,571 (February 24, 1987).

    Google Scholar 

  38. D.J. Fray, “Method for Detecting Elements,” U.S. patent 4,166,009 (August 28, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fergus, J.W. Electrochemical magnesium sensors for Use in aluminum processing. JOM 47, 36–40 (1995). https://doi.org/10.1007/BF03221306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221306

Keywords

Navigation