Advertisement

JOM

, Volume 43, Issue 8, pp 60–65 | Cite as

The electrowinning of copper from a cupric chloride solution

  • H. K. Lin
  • X. J. Wu
  • P. D. Rao
Copper and Chloride Hydrometallurgy Research Summary

Abstract

In this work, the Eh pCl diagram of the CuCl-H2O system was established, and the kinetics of copper dissolution in cupric chloride solution were studied with an emphasis on possible difficulties that may occur during copper electrowinning. The results were used to guide an investigation of copper electrowinning from cupric chloride solution.

Keywords

Current Efficiency Feed Solution Copper Cathode Copper Dissolution Chloride Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.M. Schweitzer and R.W. Livingston, “Duval’s CLEAR Hydrometallurgical Process,” Chloride Electrometallurgy, ed. P.D. Parker (Warrendale, PA: TMS, 1982), pp. 203–220.Google Scholar
  2. 2.
    D.M. Muir and G. Senanayake, “Refining of CLEAR Copper Powders by the Parker Process,” Proceedings on Extractive Metallurgy (Victoria, Australia: AusIMM, 1984) pp. 353–359.Google Scholar
  3. 3.
    J.P. Pemsler, D. Dempsey and J.K. Litchfield, Proc. Electrochem. Soc., 86-13 (Pennington, NJ: the Electrochemical Society, 1986), pp. 207–216.Google Scholar
  4. 4.
    D.J. Fray, “Electrolysis of Cupric and Cuprous Chloride Solutions,” Mineral Processing & Extractive Metallurgy: Transactions Section C, 96 (March 1987), pp. 49–53.Google Scholar
  5. 5.
    A.Y. Kosillo, “Electrowinning Copper from a Cupric Chloride Solution,” Kompleksn. Ispol’z. Miner. (12) (1983), pp. 68–69.Google Scholar
  6. 6.
    G.C. Mitter et al., “Electrowinning Copper from Cuprous Chloride,” J. Sci. Ind. Rev., 20D (1961), pp. 114–116.Google Scholar
  7. 7.
    K.J. Cathro, “Electrowinning Copper from Chloride Solutions,” Trends in Electrochemistry, ed. J.O.M. Bockris et al. (New York: Plenum Press, 1977), pp. 355–372.CrossRefGoogle Scholar
  8. 8.
    D.G. Winter, J.W. Covington and D.M. Muir, “Studies Related to the Electrowinning of Copper from Chloride Solutions,” Chloride Electrometallurgy, ed. P.D. Parker (Warrendale, PA: TMS, 1982), pp. 167–188.Google Scholar
  9. 9.
    L. Albert and R. Winand, “Copper Electrowinning in Chloride Aqueous Solutions,” Chloride Electrometallurgy, ed. P.D. Parker (Warrendale, PA: TMS, 1982), pp. 189–202.Google Scholar
  10. 10.
    E. Andersen et al., “Production of Base Metals from Complex Sulphide Concentrates by the Ferric Chloride Route in a Small Continuous Pilot Plant,” J. du Four Electrique, (8) (1981), pp. 32–40.Google Scholar
  11. 11.
    U. Filor, “Regenerations—und Kupfer—Rückgewinnungssystem für Ätzmedien,” Metalloberfläche, 41 (11) (1987), pp. 518–520.Google Scholar
  12. 12.
    R.F. Dalton et al., “Cuprex—New Chloride-Based Hydrometallurgy to Recover Copper from Sulfide Ores,” Mining Engineering (January 1988), pp. 24–28.Google Scholar
  13. 13.
    L. Albert and R.F.P. Wind, “Characterization of the Behavior, in Chloride Solution, of Copper and of the Most Important Impurities Contained in a Sulphide Concentrate, in Order to Recover the Copper,” Chloride Hydrometallurgy, (Brussels, Belgium: Benelux Metallurgie, 1977), pp. 319–335.Google Scholar
  14. 14.
    D.J. Mackinnon and J.M. Brannen, “Factors Affecfing the Structure of Copper Deposits Electrowon from Aqueous Chloride Electrolyte,” J. Appl. Electrochem., 15 (5) (1985), pp. 649–658.Google Scholar
  15. 15.
    A. Yazawa and N. Eguchi, Hydrometallurgy Process and Waste Water Treatment (Tokyo: Kyoritsu, 1975), pp. 32–41.Google Scholar
  16. 16.
    D.M. Muir and G. Senanayake, “Refining of CLEAR Copper Powders by the Parker Process,” Proceedings on Extractive Metallurgy (Victoria, Australia: AusIMM, 1984), pp. 353–359.Google Scholar
  17. 17.
    J.P. Wilson and W.W. Fisher, “Cupric Chloride Leaching of Chalcopyrite,” JOM, 33 (February 1981), pp. 52–57.Google Scholar
  18. 18.
    W.M. Latimer, Oxidation Potentials, 2nd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1952), pp. 183–188.Google Scholar
  19. 19.
    E. Högfelt, Stability Constants of Metal-Ion Complexes, Part A: In-organic Ligands (Oxford, U.K.: Pergamon Press, 1982), pp. 10–11.Google Scholar
  20. 20.
    R.C. Weast, CRC Handbook of Chemistry and Physics, 68th ed. (Boca Raton, FL: CRC Press, 1987-1988), B. 207.Google Scholar
  21. 21.
    J.A. Dean, Lange’s Handbook of Chemistry, 11th ed. (New York, NY: McGraw-Hill, 1973), p. (5)–46.Google Scholar
  22. 22.
    P. Duby, INCRA Monograph IV, The Metallurgy of Copper: The Thermodynamic Properties of Aqueous Inorganic Copper Systems (New York: International Copper Research Association, 1977), p. 22–35.Google Scholar
  23. 23.
    W.K. Tolley, H.H. Huang and J.D. Miller, “Reaction Kinetics Involved in Cupric Chloride Leaching of Metallic Copper Spheres in a Stirred Reactor,” Chloride Hydrometallurgy, (Brussels, Belgium: Benelux Metallurgie, 1977), pp. 96–133.Google Scholar
  24. 24.
    L.G. Sillen, Stability Constants of Metal-Ion Complexes, Sect. 1: In-organic Ligands, special pub. no. 17 (London: the Chemical Society, 1964), pp. 285–286.Google Scholar
  25. 25.
    T. Hurlen, “Electrochemical Behavior of Copper in Acid Chloride Solution,” Acta Chemica Scandinavica, 15 (1961), pp. 1231, 1239.Google Scholar
  26. 26.
    L.F. Kozin, K.K. Lepesov and S.N. Nagibin, “The Investigation of Copper Ionization in LiCl Solution by the Method of Rotating Disc Electrode with a Ring,” Izvestiia Akademii Nauk Kazahskoi SSR, Seriia Khimicheskaia (6) (1980), pp. 28–33.Google Scholar
  27. 27.
    V.K. Altukhov et al., “The Mechanism of Anodic Oxidation of Copper in Chloride Solutions,” Elektrokhimiya, 15 (2) (1979), p. 286.Google Scholar
  28. 28.
    L.F. Kozin, S.N. Nagibin and K.K. Lepesov, “Kinetics and Mechanism of Anodic Oxidation of Copper in Chloride Solutions,” Ukrainskivi Khimicheskivi Zhurnal, 48 (11) (1982), pp. 1194–1197.Google Scholar
  29. 29.
    R.J. Meyer and Erich Pietsch, “tKupfer;” Gmelins Hanbuck Der Anorganischen Chemie, System-nummer 60, Teil B, Lieferung 3 (Weinheim, Germany, Verlag Chemie, 1965), p. 1420, pp. 1408–1411.Google Scholar
  30. 30.
    V.D. Karabinis and P. Duby, “Chronopotentiometric Studies of Copper Deposition from Chloride Electrolytes,” Chloride Electrometallurgy, ed. P.D. Parker (Warrendale, PA: TMS, 1982), pp. 203–220.Google Scholar
  31. 31.
    V.F. Pestrikov, Yu.P. Khranilov and L.A. Merzlyakova, “On Mechanism of the Cathodic Reaction of Chloride Copper (I) Complexes,” Electrokhimiya, 13 (1979), pp. 1380–1383.Google Scholar
  32. 32.
    S.D. Gokhale, “Electrolysis of Cuprous Chloride,” J. Sci. Ind. Rev., 10B (1951), pp. 316–321.Google Scholar

Copyright information

© TMS 1991

Authors and Affiliations

  • H. K. Lin
    • 1
  • X. J. Wu
    • 1
  • P. D. Rao
    • 1
  1. 1.University of AlaskaFairbanksUSA

Personalised recommendations