Skip to main content
Log in

Aluminum casting furnace modeling

  • Feature
  • Modeling Technology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Casting furnaces play a central role in aluminum production and are the site of numerous interacting phenomena that take place in the combustion chamber and within the metal. For the analysis and design of the furnace, a mathematical model is useful. While the development of such a model can be a time-consuming process, improved furnace performance may ultimately result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.T. Bui and J. Perron, “Performance Analysis of the Aluminum Casting Furnace,” Met. Trans., 19B (1988), pp. 171–180.

    CAS  Google Scholar 

  2. J. Tremblay, “Simulation d'un Bain de Métal en Fusion Avec Convection Naturelle,” Master's Thesis, Université du Québec à Chicoutimi (1986).

  3. H.I. Rosten and D.B. Spalding, “PHOENICS Beginner's Guide and User Manual,” Report No TR/100, CHAM Ltd., London (1986).

    Google Scholar 

  4. R.G. Siddall, “Flux Methods for the Analysis of Radiant Heat Transfer,” J. Inst. of Fuel, (1974), pp. 101–109.

  5. H.C. Hottel and A.F. Sarofim, Radiative Transfer, McGraw-Hill, New York (1967).

    Google Scholar 

  6. Y.S. Kocaefe, “Mathematical Modeling of the Interaction Between Flow and Radiative Transfer in Combustion Systems,” Master's Thesis, University of New-Brunswick, Fredericton, Canada, 1982.

    Google Scholar 

  7. T. Bourgeois, R.T. Bui, A. Charette and Y.S. Kocaefe, “Flowfield Modeling of An Aluminum Casting Furnace Combustion Chamber,” Met. Trans. B, in press (1988).

  8. A. Larouche, A. Charette, F. Erchiqui and Y.S. Kocaefe, “Modèle en Deux Dimensions Pour le Calcul Simplifié du Rayonnment dans une Fournaise Industrielle,” Canadian Conference on Industrial Computer Systems, Montreal, Canada (1986).

    Google Scholar 

  9. G. Comini, S. Del Guidice, R.W. Lewis and O.C. Zienkewicz, “Finite Element Solution of Non-Linear Heat Conduction Problems with Special Reference to Phase Change,” Int. J. Num. Meth. in Eng., 8 (1974), pp. 613–624.

    Google Scholar 

  10. E.C. Lemmon, “Multidimensional Integral Phase Change Approximations for Finite Element Conduction Codes,” Num. Meth. in Heat Trans., Lewis, Morgan and Zienkewicz, eds., Wiley and Sons, 1981.

    Google Scholar 

  11. G. Simard, R.T. Bui and V. Potocnik, “Solving Moving Boundary Problems Using PHOENICS with Effective Thermal Properties,” 2nd International PHOENICS Users Conference, London, U.K., 1987.

  12. V. Voller, “Modeling Solidification Processes,” Mathematical Modeling of Materials Processing Operations, Szekely et al., eds., TMS, 1987.

    Google Scholar 

  13. M. Lacroix, “Computation of Heat Transfer During Melting of a Pure Substance from an Isothermal Wall,” submitted to J. Num. Heat Trans. (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, R.T. Aluminum casting furnace modeling. JOM 41, 43–47 (1989). https://doi.org/10.1007/BF03220826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220826

Keywords

Navigation