Advertisement

JOM

, Volume 46, Issue 3, pp 11–19 | Cite as

Computed tomography part II: The practical use of a single source and detector

  • James C. Elliott
  • Paul Anderson
  • Graham Roy Davis
  • Ferranti See Leng Wong
  • S. David Dover
Feature Featured Overview

Abstract

Although a single-source, single-detector system has limitations, it can prove extremely useful for computed tomography studies. Such simple systems also have the advantages of relatively low set-up costs excellent results for many different types of measurements.

Keywords

Fluorapatite Sorption Coefficient Linear Absorption Coefficient Data Collection Time Alias Artifact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.R. Stock, et al., “Microtomography of Silicon Nitride/ Silicon Carbide Composites,” Ceramic Transactions, 5 (1989), pp. 161–170.Google Scholar
  2. 2.
    W. Graeff and K. Engelke, “Microradiography and Microtomography,” Handbook on Synchrotron Radiation, vol. 4, ed. S. Ebashi, M. Koch, and E. Rubenstein (Amsterdam, the Netherlands: North-Holland, 1991), pp. 361–405.Google Scholar
  3. 3.
    R. Nußhardt et al., “Microtomography: A Tool for Nonde-structive Study of materials,” Synchrotron Radiation News, 4 (1991),pp.21–23.Google Scholar
  4. 4.
    J.H. Kinney and M.C. Nichols, “X-Ray Tomographie Microscopy (XMT) Using Synchrotron Radiation,” Annual Rev. Sci., 22 (1992), pp. 121–152.Google Scholar
  5. 5.
    J.C. Elliott and S.D. Dover, “X-Ray Microtomography,” /. Microscopy, 126 (1982), pp. 211–213.Google Scholar
  6. 6.
    J.C. Elliott et al., “Scanning X-ray Microradiography and Microtomography of Cal cified Tissues,” Calcified Tissues, ed. D.W.L. Hukins (Basingstoke, U.K.: Macmillan, 1989), pp. 41–63.Google Scholar
  7. 7.
    J.C. Elliott et al., “Application of Scanning Microradiography and X-ray Microtomography to Studies of Bones and Teeth,” J. X-Ray Sci. Tech., in press.Google Scholar
  8. 8.
    P.D. Tonner et al., “Region-of-Interest Tomography Imaging for Product and Material Characterization,” Industrial Computerized Tomography (Columbus, OH: American Society for Nondestructive Testing, 1989), pp. 160–165.Google Scholar
  9. 9.
    P. Reimers, A. Kettschau, and J. Goebbels, “Region-of-Interest (ROD Mode in Industrial X-ray Computed Tomography,” Industrial Computerized Tomography (Columbus, OH: American Soc. for Nondestructive Testing, 1989), pp. 48–53.Google Scholar
  10. 10.
    G.E. Ice, “Microdiffraction with Synchrotron Radiation,” Nucl. Instr. Methods Phys. Res., B24/25 (1987), pp. 397–399.Google Scholar
  11. 11.
    J.C. Elliott et al., “X-Ray Microtomography of Biological Tissues Using Laboratory and Synchrotron Sources,” Biological Trace Element Res., 13 (1987), pp. 219–227.Google Scholar
  12. 12.
    G.R. Davis, J.C. Elliott, and P. Anderson, “Quantitative Microtomography Using a 10 μm Polychromatic X-Ray Beam from a Laboratory Source,” X-Ray Microscopy III, ed. A.G. Michette, G.R. Morrison, and C.J. Buckley (Berlin: Springer-Verlag, 1992), pp. 458–460.Google Scholar
  13. 13.
    J. Bartosek et al., “The Use of a Pileup Rejector in Quantitative Pulse Spectrometry,” Nucl. Instrum. Methods, 104 (1972), pp. 221–223.Google Scholar
  14. 14.
    L. Grodzins, “Optimum Energies for X-Ray Transmission Tomography of Smal l Samples—Applications of Synchrotron Radiation to Computed Tomography I,” Nucl. Instrum. Meth., 206 (1983), pp. 541–546.Google Scholar
  15. 15.
    A.C. Kak and M. Slaney, Principles of Computerized Tomographie Imaging (New York: IEEE, 1988), p. 188.Google Scholar
  16. 16.
    M. Slaney, Principles of Computerized Tomographie Imaging (New York: IEEE, 1988) In ref. 15, p. 186.Google Scholar
  17. 17.
    H.A. Levy, A.L. Olins, and D.E. Olins, “Distribution of Projection Angles for Single-Axis-Tilt Electron Microscope Tomography of Extended Thin Planar Specimens,” J. Microscopy, 165 (1992), pp. 325–330.Google Scholar
  18. 18.
    M. Slaney, Principles of Computerized Tomographie Imaging (New York: IEEE, 1988) In ref. 15, p. 120.Google Scholar
  19. 19.
    C.H. MacGillavry and G.D. Rieck, eds., International Tables for X-Ray Crystal lography, vol. III (Birmingham, U.K.: Kynoch Press, 1960).Google Scholar
  20. 20.
    D.A. Chesler, S.J. Riederer, and N.J. Pelc, “Noise Due to Photon Counting Statistics in Computed X-Ray Tomography,” J. Comp. Assisted Tomography, 1 (1977), 64–74.Google Scholar
  21. 21.
    J.C. Elliott et al., “Application of X-Ray Microtomography in materials Science Illustrated by a Study of a Continuous Fiber Metal Matrix Composite,” J. X-Ray Sci. Tech., 2 (1990), pp. 249–258.Google Scholar
  22. 22.
    S.D. Dover et al., “3-Dimensional X-Ray Microscopy with Accurate Registration of Tomographie Sections,” J. Microscop., 153 (1989), pp. 187–191.Google Scholar
  23. 23.
    G.N. Ramachandran and A.V. Lakshminarayanan, “Three-Dimensional Reconstruction from Radiographs and Electron Micrographs: Application of Convolutions Instead of Fourier Transforms,” Proc. Nat. Acad. Sci., 68 (1971), pp. 2236–2240.Google Scholar
  24. 24.
    A.C. Kak and M. Slaney, Principles of Computerized Tomographie Imaging (New York: IEEE, 1988), p. 72.Google Scholar
  25. 25.
    M. Folkard, “Development and Application of a Gamma-ray Tomographie Scanner,” Ph.D. thesis, University of Surrey, U.K. (1983).Google Scholar
  26. 26.
    G.R. Davis, “The Effect of Linear Interpolation of the Filtered Projections on Image Noise in X-Ray Computed Tomography,” J. X-Ray Sci. Tech. (submitted).Google Scholar
  27. 27.
    T.M. Breunig et al, “Application of X-Ray Microtomography to the Study of SiC/Al Metal Matrix Composite Material,” New materials and Their Applications, ed. D. Holland (Bristol, U.K.: Institute of Physics, 1990), pp. 53–60.Google Scholar
  28. 28.
    U. Bonse et al., “X-Ray Tomographie Microscopy,” X-Ray Microscopy III, ed A.G. Michette, G.R. Morrison, and C.J. Buckley (Berlin: Springer-Verlag), pp. 167–176.Google Scholar
  29. 29.
    T.M. Breunig et al., “Quantitative Characterization of Damage in a Composite Material using X-Ray Tomographie Microscopy,” X-Ray Microscopy III, ed. A.G. Michette, G.R. Morrison, and C.J. Buckley (Berlin: Springer-Verlag, 1992), pp. 465–468.Google Scholar
  30. 30.
    P.M. Mummery and B. Derby, “Damage Initiation and Accumulation in Metal Matrix Composites,” Proceedings of ICCM-IX, vol. 1, ed. A. Miravete, (Cambridge, U.K.: Woodhead Publishing, 1993), pp. 424–429.Google Scholar
  31. 31.
    P.M. Mummery et al., “Damage Assessment in Particle-Reinforced Metal Matrix Composites,” Scripta Metal. Mater., 29 (1993), pp. 1457–1462.Google Scholar
  32. 32.
    W.H. McMaster et al., “Compilation of X-Ray Cross Sections,” Lawrence Radiation Laboratory Report UCRL-50174 Sec. II Rev. 1 (Livermore, CA: U. of Cal ifornia, 1969).Google Scholar
  33. 33.
    J.C. Elliott et al. “Application of X-Ray Microtomography to the Study of Dental Hard Tissues,” Tooth Enamel V—Proceedings of the Fifth International Symposium on the Composition, Properties, and Fundamental Structure of Tooth Enamel and Related Tissues, ed R.W. Fearnhead (Tsurumi, Japan: Florence Publishers, 1989), pp. 429–433.Google Scholar
  34. 34.
    A. Boyde et al., “Quantitative Mineral Density Mapping of Space Flight Femoral Bone at Submicron Resolution: BSE Cal ibrated by μCT,” Bone, 11,217 (abstract).Google Scholar

Copyright information

© TMS 1994

Authors and Affiliations

  • James C. Elliott
    • 1
  • Paul Anderson
    • 1
  • Graham Roy Davis
    • 1
  • Ferranti See Leng Wong
    • 1
  • S. David Dover
    • 2
  1. 1.London Hospital Medical CollegeUK
  2. 2.Randle Institute, King's CollegeLondonUK

Personalised recommendations