Skip to main content
Log in

Computed tomography part II: The practical use of a single source and detector

  • Feature
  • Featured Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Although a single-source, single-detector system has limitations, it can prove extremely useful for computed tomography studies. Such simple systems also have the advantages of relatively low set-up costs excellent results for many different types of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Stock, et al., “Microtomography of Silicon Nitride/ Silicon Carbide Composites,” Ceramic Transactions, 5 (1989), pp. 161–170.

    Google Scholar 

  2. W. Graeff and K. Engelke, “Microradiography and Microtomography,” Handbook on Synchrotron Radiation, vol. 4, ed. S. Ebashi, M. Koch, and E. Rubenstein (Amsterdam, the Netherlands: North-Holland, 1991), pp. 361–405.

    Google Scholar 

  3. R. Nußhardt et al., “Microtomography: A Tool for Nonde-structive Study of materials,” Synchrotron Radiation News, 4 (1991),pp.21–23.

    Google Scholar 

  4. J.H. Kinney and M.C. Nichols, “X-Ray Tomographie Microscopy (XMT) Using Synchrotron Radiation,” Annual Rev. Sci., 22 (1992), pp. 121–152.

    CAS  Google Scholar 

  5. J.C. Elliott and S.D. Dover, “X-Ray Microtomography,” /. Microscopy, 126 (1982), pp. 211–213.

    CAS  Google Scholar 

  6. J.C. Elliott et al., “Scanning X-ray Microradiography and Microtomography of Cal cified Tissues,” Calcified Tissues, ed. D.W.L. Hukins (Basingstoke, U.K.: Macmillan, 1989), pp. 41–63.

    Google Scholar 

  7. J.C. Elliott et al., “Application of Scanning Microradiography and X-ray Microtomography to Studies of Bones and Teeth,” J. X-Ray Sci. Tech., in press.

  8. P.D. Tonner et al., “Region-of-Interest Tomography Imaging for Product and Material Characterization,” Industrial Computerized Tomography (Columbus, OH: American Society for Nondestructive Testing, 1989), pp. 160–165.

    Google Scholar 

  9. P. Reimers, A. Kettschau, and J. Goebbels, “Region-of-Interest (ROD Mode in Industrial X-ray Computed Tomography,” Industrial Computerized Tomography (Columbus, OH: American Soc. for Nondestructive Testing, 1989), pp. 48–53.

    Google Scholar 

  10. G.E. Ice, “Microdiffraction with Synchrotron Radiation,” Nucl. Instr. Methods Phys. Res., B24/25 (1987), pp. 397–399.

    Google Scholar 

  11. J.C. Elliott et al., “X-Ray Microtomography of Biological Tissues Using Laboratory and Synchrotron Sources,” Biological Trace Element Res., 13 (1987), pp. 219–227.

    Google Scholar 

  12. G.R. Davis, J.C. Elliott, and P. Anderson, “Quantitative Microtomography Using a 10 μm Polychromatic X-Ray Beam from a Laboratory Source,” X-Ray Microscopy III, ed. A.G. Michette, G.R. Morrison, and C.J. Buckley (Berlin: Springer-Verlag, 1992), pp. 458–460.

    Google Scholar 

  13. J. Bartosek et al., “The Use of a Pileup Rejector in Quantitative Pulse Spectrometry,” Nucl. Instrum. Methods, 104 (1972), pp. 221–223.

    Google Scholar 

  14. L. Grodzins, “Optimum Energies for X-Ray Transmission Tomography of Smal l Samples—Applications of Synchrotron Radiation to Computed Tomography I,” Nucl. Instrum. Meth., 206 (1983), pp. 541–546.

    CAS  Google Scholar 

  15. A.C. Kak and M. Slaney, Principles of Computerized Tomographie Imaging (New York: IEEE, 1988), p. 188.

    Google Scholar 

  16. M. Slaney, Principles of Computerized Tomographie Imaging (New York: IEEE, 1988) In ref. 15, p. 186.

  17. H.A. Levy, A.L. Olins, and D.E. Olins, “Distribution of Projection Angles for Single-Axis-Tilt Electron Microscope Tomography of Extended Thin Planar Specimens,” J. Microscopy, 165 (1992), pp. 325–330.

    Google Scholar 

  18. M. Slaney, Principles of Computerized Tomographie Imaging (New York: IEEE, 1988) In ref. 15, p. 120.

  19. C.H. MacGillavry and G.D. Rieck, eds., International Tables for X-Ray Crystal lography, vol. III (Birmingham, U.K.: Kynoch Press, 1960).

    Google Scholar 

  20. D.A. Chesler, S.J. Riederer, and N.J. Pelc, “Noise Due to Photon Counting Statistics in Computed X-Ray Tomography,” J. Comp. Assisted Tomography, 1 (1977), 64–74.

    CAS  Google Scholar 

  21. J.C. Elliott et al., “Application of X-Ray Microtomography in materials Science Illustrated by a Study of a Continuous Fiber Metal Matrix Composite,” J. X-Ray Sci. Tech., 2 (1990), pp. 249–258.

    CAS  Google Scholar 

  22. S.D. Dover et al., “3-Dimensional X-Ray Microscopy with Accurate Registration of Tomographie Sections,” J. Microscop., 153 (1989), pp. 187–191.

    CAS  Google Scholar 

  23. G.N. Ramachandran and A.V. Lakshminarayanan, “Three-Dimensional Reconstruction from Radiographs and Electron Micrographs: Application of Convolutions Instead of Fourier Transforms,” Proc. Nat. Acad. Sci., 68 (1971), pp. 2236–2240.

    CAS  Google Scholar 

  24. A.C. Kak and M. Slaney, Principles of Computerized Tomographie Imaging (New York: IEEE, 1988), p. 72.

    Google Scholar 

  25. M. Folkard, “Development and Application of a Gamma-ray Tomographie Scanner,” Ph.D. thesis, University of Surrey, U.K. (1983).

    Google Scholar 

  26. G.R. Davis, “The Effect of Linear Interpolation of the Filtered Projections on Image Noise in X-Ray Computed Tomography,” J. X-Ray Sci. Tech. (submitted).

  27. T.M. Breunig et al, “Application of X-Ray Microtomography to the Study of SiC/Al Metal Matrix Composite Material,” New materials and Their Applications, ed. D. Holland (Bristol, U.K.: Institute of Physics, 1990), pp. 53–60.

    Google Scholar 

  28. U. Bonse et al., “X-Ray Tomographie Microscopy,” X-Ray Microscopy III, ed A.G. Michette, G.R. Morrison, and C.J. Buckley (Berlin: Springer-Verlag), pp. 167–176.

  29. T.M. Breunig et al., “Quantitative Characterization of Damage in a Composite Material using X-Ray Tomographie Microscopy,” X-Ray Microscopy III, ed. A.G. Michette, G.R. Morrison, and C.J. Buckley (Berlin: Springer-Verlag, 1992), pp. 465–468.

    Google Scholar 

  30. P.M. Mummery and B. Derby, “Damage Initiation and Accumulation in Metal Matrix Composites,” Proceedings of ICCM-IX, vol. 1, ed. A. Miravete, (Cambridge, U.K.: Woodhead Publishing, 1993), pp. 424–429.

    Google Scholar 

  31. P.M. Mummery et al., “Damage Assessment in Particle-Reinforced Metal Matrix Composites,” Scripta Metal. Mater., 29 (1993), pp. 1457–1462.

    Google Scholar 

  32. W.H. McMaster et al., “Compilation of X-Ray Cross Sections,” Lawrence Radiation Laboratory Report UCRL-50174 Sec. II Rev. 1 (Livermore, CA: U. of Cal ifornia, 1969).

    Google Scholar 

  33. J.C. Elliott et al. “Application of X-Ray Microtomography to the Study of Dental Hard Tissues,” Tooth Enamel V—Proceedings of the Fifth International Symposium on the Composition, Properties, and Fundamental Structure of Tooth Enamel and Related Tissues, ed R.W. Fearnhead (Tsurumi, Japan: Florence Publishers, 1989), pp. 429–433.

    Google Scholar 

  34. A. Boyde et al., “Quantitative Mineral Density Mapping of Space Flight Femoral Bone at Submicron Resolution: BSE Cal ibrated by μCT,” Bone, 11,217 (abstract).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor's Note

This is the second installment of a series on computed tomography. Part I, published in January, introduced the subject and discussed industrial applications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, J.C., Anderson, P., Davis, G.R. et al. Computed tomography part II: The practical use of a single source and detector. JOM 46, 11–19 (1994). https://doi.org/10.1007/BF03220641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220641

Keywords

Navigation