, Volume 43, Issue 6, pp 10–15 | Cite as

An issue in thermal management: Metallizing high thermal conductivity ceramic substrates in microelectronics

  • Alistair D. Westwood
  • Michael R. Notis
Interconnection and Electronic Material Featured Overview


Cordierite High Thermal Conductivity Reaction Layer Aluminum Nitride Glass Frit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.R. Tummala, “Ceramics and Glass-Ceramics in Electronic Packaging,” Electronic Packaging Materials Science V, ed. E.D. Lillie, R.H. Jaccodine, P. Ho and K. Jackson (Pittsburgh, PA: MRS, 1991), in press.Google Scholar
  2. 2.
    B.C. Johnson, “Overview of High Performance Packaging Materials,” ibid.Google Scholar
  3. 3.
    W. Werdecker and F. Aldinger, “Aluminum Nitride an Alternative Ceramic Substrate for High Power Applications in Microcircuits,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, CHMT-7 (1984), pp. 399–404.Google Scholar
  4. 4.
    A.J. Blogett, “Microelectronic Packaging,” Scientific American, 249 (July 1983), pp. 86–97.Google Scholar
  5. 5.
    G.A. Slack, R.A. Tanzilli, R.O. Pohl and J.W. Vandersande, “The Intrinsic Thermal Conductivity of AIN,” J. Phys. Chem. Solids, 48 (1987), pp. 641–647.Google Scholar
  6. 6.
    N. Kuramoto, H. Taniguchi and I. Aso, “Translucent AIN Ceramic Substrate,” IIEEE Trans. Components, Hybrids, and Manufacturing Technology, CHMT-9 (1986), pp. 386–390.Google Scholar
  7. 7.
    J.L. Sprague, “Multilayer Ceramic Packaging Alternatives,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, CHMT-13 (1990), pp. 390–396.Google Scholar
  8. 8.
    A.D. Westwood, “Microstructural Characterization of Aluminum Nitride Substrates and Metallization Interfaces” (M.S. thesis, Lehigh University, 1988), pp. 9–13.Google Scholar
  9. 9.
    Y. Kurokawa, K. Utsumi and H. Takamizawa, “Development and Microstructural Characterization of High Thermal Conductivity Aluminum Nitride Ceramics,” J. Am. Ceram. Soc., 71 (1988), pp. 588–594.Google Scholar
  10. 10.
    N. Iwase et al., “Thick Film and Direct Bond Copper Forming Technologies for Aluminum Nitride Substrate,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, CHMT-8 (1985), pp. 253–258.Google Scholar
  11. 11.
    L.M. Sheppard, “Aluminum Nitride: A Versatile but Challenging Material,” Am. Ceram. Soc. Bull., 69 (1990), pp. 1801–1812.Google Scholar
  12. 12.
    M. McCartney, R.A. Youngman and R.G. Teller, “High Resolution Electron Microscopy of Planar Inversion Domain Boundaries in Aluminum Nitride,” to be published in Ultramicroscopy 1991.Google Scholar
  13. 13.
    J.E. Parrott and A.D. Stuckes, Thermal Conductivity of Solids (New York: Pion Press, 1975).Google Scholar
  14. 14.
    G.A. Slack, “Nonmetallic Crystals with High Thermal Conductivity,” J. Phys. Chem. Solids, 34 (1973), pp. 321–335.Google Scholar
  15. 15.
    R. Berman, Thermal Conductivity of Solids (Oxford, U.K.: Oxford University Press, 1976).Google Scholar
  16. 16.
    A.N. Cormack, “Intrinsic Disorder in Aluminum Nitride,” J. Am. Ceram. Soc., 72 (1989), pp. 1730–1732.Google Scholar
  17. 17.
    E.T. Swartz and R.O. Pohl, “Thermal Resistance at Interfaces,” Appl. Phys. Lett., 51 (1987), pp. 2200–2202.Google Scholar
  18. 18.
    W. Werdecker, “Metallizing of Aluminum Nitride Substrates,” Proc. 5th Eur. Hybrid Microelectronics Conf. (Streffa, Italy, 1985) pp. 274–288.Google Scholar
  19. 19.
    A.D. Westwood and M.R. Notis, “AEM Study of Thin and Thick Film Metallization on A1N Substrates,” Electronic Packaging Materials Science III, ed. R. Jaccodine, K.A. Jackson and R.C. Sundahl (Pittsburgh, PA: MRS, 1988) pp. 331–336.Google Scholar
  20. 20.
    A.D. Westwood and M.R. Notts, “AEM of AlN Substrates and Metallization Interfaces,” Advances in Ceramics 26: Ceramic Substrates and Packages, ed. M.F. Yan (Westerville, OH: ACerS, 1989), pp. 171–187.Google Scholar
  21. 21.
    A.D. Westwood and M.R. Notts, “Microstructure and Microchemistry of Tungsten and Tungsten Compound Reaction with Aluminum Nitride,” Advanced Electronic Packaging Materials, ed. A. Barfknecht, J. Partridge, C-Y. Li and C.J. Chen (Pittsburgh, PA: MRS, 1990), pp. 295–300.Google Scholar
  22. 22.
    A.D. Westwood and M.R. Notts, “Thermal Conductivity Considerations for Aluminum Nitride,” Ceramic Trans., 15 (1990), pp. 685–711.Google Scholar
  23. 23.
    R.K. Brow, R.E. Loehman, A.P. Tomsia and J.A. Pask, “Interface Interactions during Brazing of Non-oxide Ceramics for Electronic Packaging,” Advances in Ceramics 26: Ceramic Substrates and Packages, ed. M.F. Yan, (Westerville, OH: ACerS, 1989), pp. 189–196.Google Scholar
  24. 24.
    A.H. Carim, “Identification and Characterization of (Ti,Cu,Al)6N, A New η Nitride Phase,” J. Mater. Res., 4 (1989), pp. 1456–1461.Google Scholar
  25. 25.
    A.H. Carim and R.E. Loehman, “Microstructure at the Interface Between AlN and a Ag-Cu-Ti Braze Alloy,” J. Mater. Res., 5 (1990), pp. 1520–1529.Google Scholar
  26. 26.
    Y. Kurokawa, C. Toy and W.D. Scott, “Characterization of the AlN-W Interface in a Cofire Multilayer AlN Substrate,” J. Am. Ceram. Soc., 72(4) (1989), pp. 612–616.Google Scholar
  27. 27.
    D.M. Mattox and H.D. Smith, “Role of Manganese in the Metallization of High Alumina Ceramics,” Am. Ceram. Soc. Bull., 64(10) (1985), pp. 1363–1367.Google Scholar
  28. 28.
    Y. Kurihara, S. Takahashi, K. Yamada and T. Endoh, “Ag-Pd Thick Film Conductor for AlN Ceramics,” IIEEE Trans. Components, Hybrids, and Manufacturing Technology, CHMT-13 (1990), pp. 306–312.Google Scholar
  29. 29.
    C.L. Julian, “Theory of Heat Conduction in Rare Gas Crystals,” Phys. Rev., 137 (1965), pp. A128–A137.Google Scholar
  30. 30.
    R. Beyers, R. Sinclair and M.E. Thomas, “Phase Equilibria in Thin-Film Metallizations,” J. Vac. Sci. Technol., B2 (1984), pp. 781–784.Google Scholar
  31. 31.
    S. Nozaki et al., “Mo-Mn Metallization of AlN Substrate,” Ceramic Trans., 15 (1990), pp. 365–374.Google Scholar
  32. 32.
    S. Kuratani et al., “Co-fired Aluminum Nitride Multilayer Substrate,” presented at the 3rd Electronic Materials and Process Congress, San Francisco, CA (August 20–23, 1990).Google Scholar
  33. 33.
    P. Kluge-Weiss and J. Gobrecht, “Directly Bonded Copper Metallization of A1N Substrates for Power Hybrids,” Electronic Packaging Materials Science, ed. E.A. Giess, K-N. Tu and D.R. Uhlmann (Pittsburgh, PA: MRS, 1985), pp. 399–404.Google Scholar
  34. 34.
    W.A. Zdaniewski and C.A. Houser, “Characterization of Gold-Aluminum Nitride and Gold-Silicon Nitride Interfaces,” J. Am. Ceram. Soc., 72 (1989), pp. 2084–2087.Google Scholar
  35. 35.
    R.C. Enck, R.D. Harris and R.A. Youngman, “Measurement of Thermal Diffusivity of Translucent Aluminum Nitride,” Ceramic Trans. vol. 5: Advanced Characterization Techniques for Ceramics, ed. W.S. Young (Westerville, OH: ACerS, 1989), pp. 214–221.Google Scholar

Copyright information

© TMS 1991

Authors and Affiliations

  • Alistair D. Westwood
    • 1
  • Michael R. Notis
    • 1
  1. 1.Lehigh UniversityUSA

Personalised recommendations