Advertisement

JOM

, Volume 43, Issue 5, pp 30–34 | Cite as

Melting and casting processes for high-temperature intermetallics

  • Subhayu Sen
  • Doru M. Stefanescu
Melting and Solidification Overview

Abstract

Although considerable effort has been devoted to characterizing the properties of high-temperature intermetallics, melting and casting processes for these materials have been slower to advance. A variety of techniques may be appropriate for the melt processing of intermetallics, but the selection of the process will depend on numerous factors related to melt cleanliness, solidification microstructure and type of alloy. Advanced processes, such as directional solidification and single-crystal growth, still require some work before they can be successfully applied to intermetallics.

Keywords

Directional Solidification Solidification Microstructure Vacuum Induction Melting Direct Casting Melting Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    .J.H. Westbrook, “Intermetallic Compounds: Their Past and Promise,” Met. Trans. A, 8A (September 1977), p. 1327.Google Scholar
  2. 2.
    L. Brewer, “Nature of Bonding in Transition—Metal Aluminides,” J. Phys. Chem., 94,(3) (1990), p. 1196.Google Scholar
  3. 3.
    A.I. Taub and R.L. Fleischer, “Intermetallic Compounds For High-Temperature Structural Use,” Science, 24 (February 1989), p. 617.Google Scholar
  4. 4.
    O.D. Sherby, “Factors Affecting The High Temperature Strength of Polycrystalline Solids,” Acta Met., 10 (February 1962), p. 135.Google Scholar
  5. 5.
    D.P. Pope and S.S. Ezz, “Mechanical Properties of Ni3Al and Ni-based Alloys with High Volume Fraction of γ,” Int’l Metals Rev., 29,(3), p. 136.Google Scholar
  6. 6.
    R.L. Fleischer and A.I. Taub, “Selecting High-Temperature Structural Intermetallic Compounds: The Materials Science Approach,” JOM, 41,(9) (September 1989), pp. 8–11.CrossRefGoogle Scholar
  7. 7.
    A. Choudhury and H. Kemmer, “Vacuum Induction Melting (VIM),” Metals Handbook, 9th ed., vol. 15 (Metals Park, OH: ASM, 1988), p. 393.Google Scholar
  8. 8.
    L.W. Lherbier, “Melting and Refining,” Superalloys II, ed. C.T. Sims, N.S. Stoloff and W.C. Hagel (New York: John Wiley & Sons, 1987), p. 387.Google Scholar
  9. 9.
    V.K. Sikka, “Commercialization of Nickel Aluminides,” High Temperature Aluminides & Intermetallics, ed. S.H. Wang, C.T. Liu, D.P. Pope and J.O. Steigler (Warrendale, PA: TMS, 1990), p. 505.Google Scholar
  10. 10.
    V.K. Sikka, “Near Net-Shape Casting of Sheet and Bar of Ordered Nickel Aluminide Alloys,” Casting of Near Net Shape Products, ed. Y. Sahai, J.E. Battles, R.S. Carbonara and C.E. Mobley (Warrendale, PA: TMS, 1988), p. 315.Google Scholar
  11. 11.
    Y. Nishiyama, T. Miyashita, S. Isobe and T. Noda, “Development of Titanium Aluminide Turbo-Charger Rotors,” High Temperature Aluminides & Intermetallics, ed. S.H. Wang, C.T. Liu, D.P. Pope, and J.O. Stiegler (Warrendale, PA: TMS, 1990), p. 557.Google Scholar
  12. 12.
    “Levitation-Melting Method Intrigues Investment Casters,” Adv. Mat. & Proc., 139, (3) (March 1991), p. 42.Google Scholar
  13. 13.
    A. Choudhury and E. Weingarter, “Vacuum Arc Remelting (VAR),” Metals Handbook, 9th ed., vol. 15 (Metals Park, OH: ASM, 1988), p. 40Google Scholar
  14. 14.
    H.B. Bomberger and F.H. Froes, “The Melting of Titanium,” JOM 36,(12), (December 1984), p. 39.Google Scholar
  15. 15.
    H. Pannen and G. Sick, “Plasma Melting & Casting,” Metals Handbook, 9th ed., vol. 15 (Metals Park, OH: ASM, 1988), p. 419.Google Scholar
  16. 16.
    P. Mathur, S. Annavarapu, D. Apelian and A. Lawley, “Process Control, Modeling and Applications of Spray Casting,” JOM 41,(10), (October 1989), p. 23.CrossRefGoogle Scholar
  17. 17.
    L.Z. Zhuang, I. Majewska-Glabus, R. Vetter and J. Duszczyk, “Microstructure of the Osprey Processed Ni3Al-X Intermetallic in Conjunction with Solidification Model at the Deposition,” Scripta Met., 24,(11), (1990), p. 2030.Google Scholar
  18. 18.
    C.T. Liu and J.O. Stiegler, “Ductile Ordered Intermetallic Alloys,” Science, 226 (November 1984), p. 636.Google Scholar
  19. 19.
    T. Hirano, “Improvement of Room Temperature Ductility of Stoichiometric Ni3Al by Unidirectional Solidification,” Acta Met., 38,(12), p. 2667.Google Scholar
  20. 20.
    K.M. Chang, “Tensile and Impact Properties of Directionally Solidified Fe-40Al Intermetallic,” Met. Trans. A, 21A (November 1990), p. 3027.Google Scholar
  21. 21.
    C.H. Lee, T. Caulfield and J.K. Tien, “The Characterization of the Process Parameters for The Directional Solidification of Ni3Al,” Scripta Met., 21 (1987), p. 925.Google Scholar
  22. 22.
    S. Nourbakhsh and P. Chen, “Microstructure and Mechanical Properties of Rapidly Solidified and Annealed NiAl Intermetallic Alloys,” Acta Met., 37,(6), p. 1573.Google Scholar
  23. 23.
    S.C. Jha, T.A. Mozhi and R. Ray, “Rapidly Solidified Al-Ti Alloys via Advanced Melt Spinning,” JOM 41,(5), (May 1989), p. 27.CrossRefGoogle Scholar
  24. 24.
    C.T. Liu and J.O. Stiegler, “Ordered Intermetallic,” Metals Handbook, 10th ed., vol. 2 (Materials Park, OH: ASM, 1990) p. 913.Google Scholar

Copyright information

© TMS 1991

Authors and Affiliations

  • Subhayu Sen
    • 1
  • Doru M. Stefanescu
    • 1
  1. 1.University of Alabama-TuscaloosaUSA

Personalised recommendations