Advertisement

JOM

, Volume 41, Issue 9, pp 42–45 | Cite as

Fe-Nd-B magnets via the hot extrusion of amorphous powders

  • Choong Jin Yang
  • Ranjan Ray
Forming Advanced Material Applied Technlogy

Abstract

A rapid solidification melt spinning technique has been developed to produce amorphous powders of Fe-Nd-B alloys modified with hafnium diboride. The amorphous powders are consolidated by the hot extrusion technique into bulk magnets of various cross sections. Consolidated magnets show ultrafine grain structure stabilized by ultrafine submicron hafnium diboride particles. The extruded magnets develop strong texture-induced magnetic anisotropy which leads to attractive energy product values of up to 16MGOe. Significant improvement in coercivity is also achieved due to ultrafine grain structure of the extruded magnets.

Keywords

Rapid Solidification Amorphous Powder High Coercivity Rapidly Solidify Extrusion Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.E. Clark, Appl. Phys. Lett., 23 (1973), pp. 642–644.Google Scholar
  2. 2.
    J.J. Croat, IEEE Trans. Magn., Mag-23 (1982), pp. 1442–1444.Google Scholar
  3. 3.
    N.C. Koon and B.N. Das, Appl. Phys. Lett., 39 (1981), pp. 840–842.Google Scholar
  4. 4.
    G.C. Hadjipanays, R.C. Hazelton and K.R. Lawless, J. Appl. Phys., 55 (1984), pp. 2073–2075.Google Scholar
  5. 5.
    M. Sagawa et al., J. Appl. Phys., 55 (1984), pp. 2083–2085.Google Scholar
  6. 6.
    M. Sagawa, S. Fujimura, H. Yamamoto and K. Hiraga, IEEE Trans. Magn., Mag-20 (1984), pp. 1584–1586.Google Scholar
  7. 7.
    J.J. Croat, J.F. Herbst, R.W. Lee and F.E. Pinkerton, J. Appl. Phys., 55 (1984), pp. 2078–2080.Google Scholar
  8. 8.
    R.W. Lee, Appl. Phys. Lett., 46 (1985), pp. 790–792.Google Scholar
  9. 9.
    R.K. Mishra, J. Appl. Phys., 62 (1987), pp. 967–980.Google Scholar
  10. 10.
    C.J. Yang and R. Ray, J. Appl. Phys., 63 (1988), pp. 3525–3527.Google Scholar
  11. 11.
    C.J. Yang and R.C. O’Handley, Mat. Sci. & Eng., 102 (1988), pp. 97–103.Google Scholar
  12. 12.
    K.D. Durst and H. Kronmuller, in Proc. 8th International Workshop on Rare-Earth Magnets, ed. K.J. Strnat (Dayton, OH: University of Dayton, 1985), p. 725.Google Scholar
  13. 13.
    J.D. Livingston, J. Appl. Phys., 57 (1985), p. 4139.Google Scholar
  14. 14.
    C.J. Yang, in Proc. of Texture Control and Anisotropy of Properties in Magnet Materials Symposium, 1988 World Materials Congress, Chicago, IL, Sept. 25-30, 1988.Google Scholar
  15. 15.
    C.J. Yang and R. Ray, J. Appl. Phys., 63(11) (1988).Google Scholar
  16. 16.
    C. Wagner, Z. Electrochem., 65 (1961), p. 581.Google Scholar
  17. 17.
    J.D. Livingston, in Proc. 8th International Workshop on Rare-Earth Magnets, ed. K.J. Strnat (Dayton, OH: University of Dayton, 1985), p. 429.Google Scholar
  18. 18.
    Yu Jin Chang and X.R. Qian, Phys. Stat. Sol., 93 (1986), p. 573.Google Scholar
  19. 19.
    G.C. Hadjipanayis, Y.F. Tao and K.R. Lawless, in Proc. 8th International Workshop on Rare-Earth Magnets, ed. K.J. Strnat (Dayton, OH: University of Dayton, 1985), pp. 657–659.Google Scholar
  20. 20.
    R.K. Mishra, J.K. Chen and G. Thomas, J. Appl. Phys., 59(6) (1986), p. 2244.Google Scholar

Copyright information

© TMS 1989

Authors and Affiliations

  • Choong Jin Yang
    • 1
  • Ranjan Ray
    • 1
  1. 1.Magnetic Materials Research GroupMarko Materials, Inc.USA

Personalised recommendations