Advertisement

JOM

, Volume 43, Issue 1, pp 45–48 | Cite as

The interphase precipitation reaction in HSLA steels

  • Judith A. Todd
Devolopment in HSLA Steel Overview

Abstract

An in-depth study of the interphase precipitation reaction in model vanadium steels has shown that the reaction may not just be confined to HSLA steels, but may be part of a general class of banded microstructures which are common to both eutectoid and eutectic systems. A new mass transport theory has been developed in which the interphase precipitation reaction in Fe-C-V steels is treated as a generalized type of cooperative growth. In addition to predicting the spacings of sheets of interphase precipitates and the precipitate sizes in steels, this theory is providing new insights into the origin of banded structures occurring in eutectic systems at solid-liquid interface boundary velocities faster than those required for coupled growth, but slower than those required to produce the extended metastable solid solution.

Keywords

Ferrite Austenite Interphase Boundary Vanadium Carbide Eutectic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.T. Davenport, F.G. Berry and R.W. Honeycombe, Metal Sci. J., 2 (1968), pp. 104–106.Google Scholar
  2. 2.
    A.D. Batte, Ph.D. dissertation, Cambridge University (1970).Google Scholar
  3. 3.
    R.W.K. Honeycombe, Met. Trans. A, 7 (1976), pp. 915–936.Google Scholar
  4. 4.
    R.W.K. Honeycombe, Met. Sci., 14 (1980), pp. 201–214.Google Scholar
  5. 5.
    R.W.K. Honeycombe, paper presented at AIME Symposium, Philadelphia, PA (October 1983).Google Scholar
  6. 6.
    J.H. Woodhead, paper presented at the Seminar on Vanadium in High Strength Steels (Chicago, IL: Vanitec, 1979).Google Scholar
  7. 7.
    A.T. Davenport and R.W.K. Honeycombe, Proc. Roy. Soc., 322, 1549 (1971), pp. 191–205.Google Scholar
  8. 8.
    R.A. Ricks and P.R. Howell, Acta Met., 31(6) (1983), pp. 853–861.Google Scholar
  9. 9.
    A.M. Sage, D.M. Hayes, C.C. Earley and E.A. Almond, Metals Technology, 19(7) (1976), pp. 293–302.Google Scholar
  10. 10.
    P.R. Wilyman and R.W.K. Honeycombe, Metal Sci., 16(6) (1982), pp. 295–303.Google Scholar
  11. 11.
    Y. Mishima, R.M. Horn, V.F. Zackay and E.R. Parker, Met. Trans. A, 11 (1980), pp. 431–440.Google Scholar
  12. 12.
    J.B. Benson, Met. Sci., 13(6) (1979), pp. 366–72.Google Scholar
  13. 13.
    W. Roberts, A. Sandberg and T. Siwecki, paper presented at Vanitec Seminar on Vanadium Steels, Krakow (October 8–10, 1980).Google Scholar
  14. 14.
    J.M. Chilton and M.J. Roberts, Met. Trans. A, 11 (1980), pp. 1711–1721.Google Scholar
  15. 15.
    R.K. Amin, M. Korchinsky and F.B. Pickering, Metals Technology, 24(7) (1981), p. 250.Google Scholar
  16. 16.
    G. Glover, R.B. Oldland and R. Louis, paper presented at HSLA Conference, Wollongong, NSW, Australia (August 20–24, 1984).Google Scholar
  17. 17.
    “The Influence of Precipitation Mode and State of Ferrite on the Impact Properties of Vanadium Treated Steels” (BSC) V7, British Steel Corporation Final Report to Vanitec, Winterton House, Westerham, Kent TN16 1AJ, England (March 1984).Google Scholar
  18. 18.
    “The Effect of Additions of 0.15% to 0.45% Vanadium on the Microstructures of Laboratory Melts of an 0.06%C, 1.9%Mn Steel Plate Cooled under Conditions Simulating those of a Coil,” Vanitec Report DR 3/81, revised Feb. 1982, Winterton House, Westerham, Kent TN16 1AJ, England.Google Scholar
  19. 19.
    A.M. Sage, “The Discovery and History of Vanadium and its Contribution to Modern Life,” Sesquicentennial Lecture to the Royal Society, London, Metals Society (October 1981).Google Scholar
  20. 20.
    W. Lochmann, paper presented at the 4th Annual Conf. on Materials for Coal Conversion and Utilization, Gaithersburg, MD, Washington, D.C. (October 9–11, 1979).Google Scholar
  21. 21.
    D.A. Canonico, G.C. Robinson and W.R. Martin, “Pressure Vessels for Coal Conversion Systems,” Report No. ORNL/TM-5685, Oak Ridge National Laboratory, TN (September 1978).Google Scholar
  22. 22.
    T.E. Scott, “Application of 21/4Cr-1Mo Steel for Thick Wall Pressure Vessels,” STP 755 (Philadelphia, PA: ASTM, 1982), pp. 7–25.CrossRefGoogle Scholar
  23. 23.
    Y. Mishima, Ph.D. dissertation, U.C. Berkeley, Berkeley, CA (August 1979).Google Scholar
  24. 24.
    J.A. Todd and P. Li, Met. Trans. A, 17 (1986), pp. 1191–1202.Google Scholar
  25. 25.
    G.B. Crumley, M.S. thesis, U.C. Berkeley, Berkeley, CA (December 1980).Google Scholar
  26. 26.
    A.C. McGee, M.S. thesis, U.C. Berkeley, Berkeley, CA(June 1982).Google Scholar
  27. 27.
    P. Li and J.A. Todd, private communication.Google Scholar
  28. 28.
    P. Klenn, M.S. thesis, U.C. Berkeley, Berkeley, CA (February 1980).Google Scholar
  29. 29.
    A.D. Batte and R.W.K. Honeycombe, J. Iron Steel Inst., 211 (1973), pp. 284–289.Google Scholar
  30. 30.
    N.K. Balliger and R.W.K. Honeycombe, Met. Trans A, 11 (1980), pp. 421–429.Google Scholar
  31. 31.
    J.A. Todd, P. Li and S.M. Copley, Met. Trans. A, 19 (1988), pp. 2133–2138.Google Scholar
  32. 32.
    P. Li and J.A. Todd, Met. Trans. A, 19 (1988), pp. 2139–2150.Google Scholar
  33. 33.
    J.A. Todd and S.M. Copley, Scripta Met., 22 (1988), pp. 1771–1774.Google Scholar
  34. 34.
    J.A. Todd and Y.J. Su, Met. Trans. A, 20 (1989), pp. 1647–1655.Google Scholar
  35. 35.
    W.A. Elliot, F.P. Gagliano and G. Krauss, Met. Trans. A, 4 (1973), p. 2031.Google Scholar
  36. 36.
    D.G. Beck, S.M. Copley and M. Bass, Met. Trans. A, 12 (1981), p. 1687.Google Scholar
  37. 37.
    D.G. Beck, S.M. Copley and M. Bass, Met. Trans. A, 13 (1982), p. 1879.Google Scholar
  38. 38.
    W.J. Boettinger, D. Shechtman, R.J. Schaefer and F.S. Biancaniello, Met. Trans. A, 15 (1984), p. 55.Google Scholar
  39. 39.
    E.Y. Yankov, J.A. Todd and S.M. Copley, paper presented at Morris E. Fine Symposium, TMS Fall Meeting, Detroit, MI (October 8–11, 1990).Google Scholar
  40. 40.
    E.Y. Yankov, S.M. Copley, J.A. Todd and M.I. Yankova, paper presented at Symposium Fon Kinetics of Phase Transformations, MRS Fall Meeting, Boston, MA (November 26–December 1, 1990). ’Google Scholar
  41. 41.
    E.Y. Yankov, S.M. Copley, M.I. Yankova and J.A. Todd, paper presented at Morris E. Fine Symposium, TMS Fall Meeting, Detroit, MI (October 8–11, 1990).Google Scholar
  42. 42.
    E.Y. Yankov, M.I. Yankova, S.M. Copley and J.A. Todd, private communication.Google Scholar
  43. 43.
    M.J. Aziz and T. Kaplan, Acta Met., 36 (1988), p. 2335.Google Scholar
  44. 44.
    J.L. Murray, Mel. Trans. A, 15 (1984), pp. 55–66.Google Scholar

Copyright information

© TMS 1991

Authors and Affiliations

  • Judith A. Todd
    • 1
  1. 1.Illinois Institute of TechnologyUSA

Personalised recommendations