Advertisement

Research In Experimental Medicine

, Volume 200, Issue 2, pp 107–124 | Cite as

Isolated working rat heart adaptation after abrupt changes in extracellular Ca2+ concentration

  • H. D. Schmidt
Article

Abstract

In isolated working rat hearts, a rapid up- or downward change in perfusate Ca2+ concentration by the factors 2, 4, or 8 in the range between 1.25 and 10 mM resulted within 1 min in the well-known change of left ventricular contractility as evaluated by maximum left ventricular pressure change velocity (LVdP/dtmax) and left ventricular end-diastolic pressure (LVEDP). However, within about 10 min thereafter, contractility showed an adaptive behaviour opposite to the initial change, with t 1/2 values for LVdP/dtmax between 1.45 and 2.8 min. The adaptive LVdP/dtmax reactions amounted to 10–35% of the initial change. With an abrupt fall from 10 mM to 1.25 mM Ca2+ (not tolerated by all hearts), LVdP/dtmax decreased initially by 4.260 mmHg/s (LVEDP +9.7 mmHg) and increased thereafter by 524 mmHg/s (LVEDP −6.8 mmHg). The adaptive inotropic behaviour cannot be related to changes in heart rate or coronary flow and is not affected by thapsigargin (1 µM) or the amiloride derivative benzamil (10 µM). This suggests that sarcoplasmatic Ca2+-ATPase and sarcolemmal Na+-Ca2+ exchange do not play a decisive role in this adaptive behaviour. In conclusion, an intrinsic regulatory mechanism of the myocardium attenuates the inotropic effect of acute changes in Ca2+ concentration. This phenomenon might protect the heart against Ca2+ overload after an acute rise in catecholamine concentration.

Keywords

Intrinsic regulatory mechanism Myocardial contractility LVdP/dtmax Heart rate Coronary flow Na+-Ca2+ exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327:79–94PubMedGoogle Scholar
  2. 2.
    Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840PubMedCrossRefGoogle Scholar
  3. 3.
    von Anrep G (1912) On the part played by the suprarenals in the normal vascular reactions of the body. J Physiol 45:307–331Google Scholar
  4. 4.
    Bers DM (1996) Measurement of calcium transport in heart using modern approaches. New Horiz 4:36–44PubMedGoogle Scholar
  5. 5.
    Blinks JR (1956) Positive chronotropic effect of increasing right atrial pressure in the isolated mammalian heart. Am J Physiol 186:299–303PubMedGoogle Scholar
  6. 6.
    Bowditch HP (1871) Über die Eigentümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Arbeit aus der physiologischen Anstalt zu Leipzig 6:139–176Google Scholar
  7. 7.
    Caroni P, Zurini M, Clark A, Carafoli E (1983) Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. J Biol Chem 258:7305–7310PubMedGoogle Scholar
  8. 8.
    Crompton M (1990) The role of Ca2+ in the function and dysfunction of heart mitochondria. In: Langer GA (ed) Calcium and the heart. Raven Press, New York, pp 167–198Google Scholar
  9. 9.
    Deck KA (1964) Dehnungseffekte am spontan schlagenden, isolierten Sinusknoten. Pfluegers Arch 280:120–130CrossRefGoogle Scholar
  10. 10.
    Eisner DA., Trafford AW, Diaz ME, Overend CL, O’Neill SC (1998) The control of Ca2+ release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res 38:589–604PubMedCrossRefGoogle Scholar
  11. 11.
    Endoh M (1998) Changes in intracellular Ca2+ mobilization and Ca2+ sensitization as mechanisms of action of physiological interventions and inotropic agents in intact myocardial cells. Jpn Heart J 39:1–44PubMedCrossRefGoogle Scholar
  12. 12.
    Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205PubMedGoogle Scholar
  13. 13.
    Gregg DE (1958) Regulation of the collateral and coronary circulation of the heart. In: McMichael J (ed) Circulation proceedings of the Harvey Tercentenary Congress. Blackwell, Oxford, pp 163–186Google Scholar
  14. 14.
    Hansford RG, Hogue B, Prokopczuk A, Wasilewska E, Lewartowski B (1990) Activation of pyruvate dehydrogenase by electrical stimulation, and low-Na+ perfusion of guinea-pig heart. Biochim Biophys Acta 1018:282–286PubMedCrossRefGoogle Scholar
  15. 15.
    Harrison SM, Bers DM (1990) Temperature dependence of myofilament Ca sensitivity of rat, guinea pig and frog ventricular muscle. Am J Physiol 2:C274-C281Google Scholar
  16. 16.
    Hryshko LV, Philipson KD (1997) Sodium-calcium exchange: recent advances. Basic Res Cardiol 92 [Suppl I]:45–51PubMedCrossRefGoogle Scholar
  17. 17.
    Kirby MS, Sagara Y, Gaa S, Inesi G, Lederer WJ, Rogers TB (1992) Thapsigargin inhibits contraction and Ca2+ transient in cardiac cells by specific inhibition of the sarcoplasmic retiulum Ca2+ pump. J Biol Chem 267(18):12545–12551PubMedGoogle Scholar
  18. 18.
    Koch-Weser J, Blinks JR (1963) The influence of the interval between beats on myocardial contractility. Pharmacol Rev 15:601–652PubMedGoogle Scholar
  19. 19.
    Komukai K, Ishikawa T, Kurihara S (1998) Effects of acidosis on Ca2+ sensitivity of contractile elements in intact ferret myocardium. Am J Physiol 274:H147-H154PubMedGoogle Scholar
  20. 20.
    Lakatta EG (1986) Length modulation of muscle performance: Frank-Starling law of the heart. In: Fozzard HA et al (eds) The heart and cardiovascular system. Raven Press, New York, pp 819–843Google Scholar
  21. 21.
    Langer GA (1992) Calcium and the heart: exchange at the tissue, cell, and organelle levels. FASEB J 6:893–902PubMedGoogle Scholar
  22. 22.
    Langer SFJ, Schmidt HD (1998) Different left ventricular relaxation parameters in isolated working rat and guinea-pig hearts. Influence of preload, afterload, temperature and isoprenaline. Int J Card Imag 14:229–240CrossRefGoogle Scholar
  23. 23.
    Leisey JR, Grotyohann LW, Scott DA, Scaduto RC Jr (1993) Regulation of cardiac mitochondrial calcium by average extramitochondrial calcium. Am J Physiol 265: H1203-H1208PubMedGoogle Scholar
  24. 24.
    Lucchesi BR (1989) Role of calcium on excitation-contraction coupling in cardiac and vascular smooth muscle. Circulation 80 [Suppl IV]:1–13Google Scholar
  25. 25.
    Matsuoka S, Nicoll DA, Hryshko LV, Levitsky DO, Weiss JN, Philipson KD (1995) Regulation of the cardiac Na+-Ca2+ exchanger by Ca2+. Mutational analysis of the Ca2+ binding domain. J Gen Physiol 105:404–420CrossRefGoogle Scholar
  26. 26.
    McCormack JG, Denton RM (1984) Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Biochem J 218:235–247PubMedGoogle Scholar
  27. 27.
    Moss RL (1982) The effect of calcium on the maximum velocity of shortening in skinned skeletal muscle fibres of the rabbit. J Muscle Res Cell Motil 3:295–311PubMedCrossRefGoogle Scholar
  28. 28.
    Negretti N, Varro A, Eisner DA (1995) Estimate of net calcium fluxes and sarcoplasmatic reticulum calcium content during systole in rat ventricular myocytes. J Physiol 486:581–591PubMedGoogle Scholar
  29. 29.
    Parmley WW, Chuck L (1973) Length-dependent changes in myocardial contractile state. Am J Physiol 224:1195–1199PubMedGoogle Scholar
  30. 30.
    Parsons B, Szczesna D, Zhao J, van Slooten G, Kerrick WG, Putkey JA, Potter JD (1997) The effect of pH on the Ca2+ regulatory sites of skeletal and cardiac troponin C in skinned muscle fibres. J Muscle Res Cell Motil 18:599–609PubMedCrossRefGoogle Scholar
  31. 31.
    Patterson S, Starling HE (1914) On the mechanical factors which determine the output of the ventricles. J Physiol 48:357–379PubMedGoogle Scholar
  32. 32.
    Pierce GN, Maddaford TG, Kroeger EA, Cragoe EJ (1990) Protection by benzamil against dysfunction and damage in rat myocardium after calcium deletion and repletion. Am J Physiol 258:H17-H23PubMedGoogle Scholar
  33. 33.
    Pierce GN, Cole WC, Liu K, Massaeli, H, Maddaford TG, Chen YJ, McPherson CD, Jain S, Sontag D (1993) Modulation of cardiac performance by amiloride and several selected derivates of amiloride. J Pharmacol Exp Ther 265(3):1280–1291PubMedGoogle Scholar
  34. 34.
    Rasmussen H, Barret PQ (1984) Calcium messenger system: an integrated review. Physiol Rev 64:938–984PubMedGoogle Scholar
  35. 35.
    Ruegg JC (1998) Cardiac contractility: how calcium activates the myofilaments. Naturwissenschaften 85:575–582PubMedCrossRefGoogle Scholar
  36. 36.
    Sarnoff SJ, Mitchell JH, Gilmore JP (1960) Homeometric autoregulation in the heart. Circ Res 8:1077–1091PubMedGoogle Scholar
  37. 37.
    Schmidt HD, Loock W, Harms E, Fehlauer B, Uehleke R (1989) Slow length-dependent changes in myocardial contractile state are identical with the Anrep effect. (Abstract). Pflugers Arch 413:R8Google Scholar
  38. 38.
    Schulz R, Guth BD, Heusch G (1991) No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs. Evidence against the Gregg phenomenon. Circulation 83:1390–1403Google Scholar
  39. 39.
    Wang SY, Dong L, Langer GA (1997) Matching Ca efflux and influx to maintain steady state levels in cultured cardiac cells. Flux control in the sarcolemmal cleft. J Mol Cell Cardiol 29:1277–1287PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • H. D. Schmidt
    • 1
  1. 1.Institute of PhysiologyFUBBerlinGermany

Personalised recommendations