Annales Des Télécommunications

, Volume 60, Issue 1–2, pp 29–44 | Cite as

Marker codes for channels with insertions and deletions

  • Edward A. Ratzer


Coding for channels with synchronization errors is studied. Marker codes, each consisting of a low-density parity-check code with inserted markers, are developed. At low insertion-deletion probabilities marker codes are shown to outperform watermark codes. Full iterative decoding enhances performance to close to the capacity bounds. The low-density parity-check codes are optimized and the best known rate R = 0.5 code for the insertion-deletion channel presented. The codes are also shown to be effective on the bit-deletion channel.

Key words

Error correcting code Transmission error Synchronization Parity check Signal flip Sparse matrix 

Codes de Marquage Pour des Canaux Avec Insertions et Suppressions de Bits


Cet article traite des procédés de codage pour les canaux sujets à des erreurs de synchronisation. Différents codes de marquage sont introduits, chacun consistant en un code de parité à faible densité avec insertion de marqueurs. On y démontre que les codes de marquage surpassent les codes de tatouage pour des faibles probabilités d’insertion-suppression. La mise en ?uvre d’un décodage itératif améliore les performances, permettant ainsi d’approcher au plus près les bornes de capacité. L’optimisation des codes de parité à faible densité est développée, et les meilleurs codes de rendement R = 0,5 pour le canal à insertion-suppression de bits sont présentés. L’efficacité de ces codes sur le canal à suppression de bits est également démontrée.

Mots clés

Code correcteur erreur Erreur transmission Synchronisation Contrôle parité Glissement signal Matrice éparse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bours (P.A.H.),Codes for Correcting Insertion and Deletions Errors, PhD thesis, Eindhoven Technical University, June 1994.Google Scholar
  2. [2]
    Brännström (F.),Rasmussen (L. K),Grant (A.), Optimal scheduling for iterative decoding, InInternational Symposium on Information Theory, page 350, July 2003.Google Scholar
  3. [3]
    Chen (J.),Mitzenmacher (M.),Varnica NG (C.), Concatenated codes for deletion channels. InIEEE International Symposium on Information Theory, page 218, July 2003.Google Scholar
  4. [4]
    Chung (S.Y.), LDPC code design applet, Scholar
  5. [5]
    Davey (M. C.),Error-Correction Using Low-Density Parity-Check Codes, PhD thesis, University of Cambridge, 1999. Available at Scholar
  6. [6]
    Davey (M. C.), MacKay (D. J. C.), Reliable communication over channels with insertions, deletions, and substitutions,IEEE Transactions on Information Theory,47 (2):687–698, February 2001.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    dos Santos (M.P. F.),Clarke (W. A.),Ferreira (H.C.),Swart (T.G), Correction of insertions/deletions using standard convolutional codes and the Viterbi decoding algorithm, InIEEE Information Theory Workshop, pages 187–190, April 2003.Google Scholar
  8. [8]
    Durbin (R.),Eddy (S. R.),Krooh (A.),Mitchison (G.), Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, 1998.Google Scholar
  9. [9]
    Ferreira (H.C.), Clarke (WA.), Helberg (A. S. J.), Abdel-Ghaffar (K.A.S.), Han Vinck (A.J.), Insertion/deletion correction with spectral nulls,IEEE Transactions on Information Theory,43, no 2, p. 722–732, March 1997.MATHCrossRefGoogle Scholar
  10. [10]
    Gablonsky (J. M.), Kelley (C. T.), A locally-biased form of the direct algorithm,Journal of Global Optimization,21, p. 27–37, 2001.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Sellers (F. F.) Jr., Bit loss and gain correction code,IEEE Transactions on Information Theory,8, no 1, p. 35–38, January 1962.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Konstantinidis (S.), Perron (S.), Wilcox-O’Hearn (L. A.), On a simple method for detecting synchronization errors in coded messages,IEEE Transactions on Information Theory,49, no 5, p. 1355–1363, May 2003.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Levenshtein (VI.), Binary codes capable of correcting deletions, insertions and reversals,Soviet Physics — Doklady,10, no 8, p. 707–710, February 1966.MathSciNetGoogle Scholar
  14. [14]
    MacKay (D. J. C.), Good error correcting codes based on very sparse matrices,IEEE Transactions on Information Theory,45, no 2, p. 399–431, 1999.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Ratzer (E. A.), Low-density parity-check codes on Markov channels, InSecond ima Conference on Mathematics in Communications, December 2002.Google Scholar
  16. [16]
    Ratzer (E. A.), Intersected low-density parity-check and convolutional codes, In7 th International Symposium on Communication Theory and Applications, July 2003.Google Scholar
  17. [17]
    Ratzer (E. A.),MacKay (D. J. C.), Codes for channels with insertions, deletions and substitutions, In2nd International Symposium on Turbo Codes and Related Topics, 2000.Google Scholar
  18. [18]
    Schulman (L. J.), Zuckerman (D.), Asymptotically good codes correcting insertions, deletions and transpositions,IEEETransactions on Information Theory,45, no 7, p. 2552–2557, November 1999.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Sloane (N. J.), On single-deletion-correcting codes, In K.T. Arasu and A. Seress, editors,Codes and Designs, Ohio State University, May 2000, pages 273–291, 2002.Google Scholar
  20. [20]
    Stiffler (J. J.),Theory of synchronous communications, Prentice-Hall, 1971.Google Scholar
  21. [21]
    Welch (L. R.) Golomb (S. W.), Gordon (B.), Comma free codes.Canadian Journal of Mathematics,10, no 2, p. 202–209, 1958.MathSciNetMATHGoogle Scholar
  22. [22]
    Swart (T.G.) Ferreira (H. C.), Insertion/deletion correcting coding schemes based on convolution coding,Electronics Letters,38, no 16, p. 871–873, August 2002.CrossRefGoogle Scholar
  23. [23]
    Brink (S. T.),Kramer (G.),Ashikhmin (A.), Design of low-density parity-check codes for multi-antenna modulation and detection, Submitted toIEEE Transactions on Communications, June 2002.Google Scholar
  24. [24]
    Ullman (J. D.), On the capabilities of codes to correct synchronization errors,IEEE Transactions on Information Theory,13, no 1, p. 95–105, January 1967.MATHCrossRefGoogle Scholar
  25. [25]
    Worthen (A. P), Stark (W. E.), Unified design of interative receivers using factor graphs,IEEE Transactions on Information Theory,47, no 2, p. 843–849, February 2001.CrossRefGoogle Scholar
  26. [26]
    Zigangirov (K. Sh.), Sequential decoding for a binary channel with drop-outs and insertions,Problemy Peredachi Informatsii,5, no 2, p. 23–30, 1969.MATHGoogle Scholar

Copyright information

© Springer-Verlag France 2005

Authors and Affiliations

  • Edward A. Ratzer
    • 1
  1. 1.Inference Group, Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations