Reproducing properties of hyperbolically-harmonic and -monogenic functions

  • P. Cerejeiras


We shall study the solutions of the Laplace-Beltrami equation associated to certain models of hyperbolic spaces. This problem, first studied byLEUTWILER for the upper half plane case, has been generalized byCNOPS to other models. In this context, there arises the concept ofharmonic andmonogenic functions with respect to the metric of the manifold. The use of the conformal invariance provides an aditional tool for this study.


Laplace-Beltrami equation hyperbolic spaces Poisson-Szegö kernels 

MSC 2000



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. F. Brackx, R. Delanghe and F. Sommen:Clifford analysis. Pitman Advanced Publishing Program, 1982.Google Scholar
  2. P. Cerejeiras:O Operador de Dirac em Espaços Hiperbólicos. Ph.D. Thesis, Aveiro, Portugal, 1997.Google Scholar
  3. P.Cerejeiras: Reproducing Kernels for Hyperbolic Spaces. InClifford Algebras and their Applications in Mathematical Physics, vol. 2 — Clifford Analysis. Ryan, J. / Sprössig, W. ({ntEds.}), Birkäuser, Basel, 2000, 303–314.Google Scholar
  4. P. Cerejeiras and J. Cnops: Hodge Dirac Operators for Hyperbolic Spaces.Complex Variables 41 (2000), 267–278.MathSciNetMATHGoogle Scholar
  5. J. Cnops:Hurwitz pairs and applications of Möbius transformations. Habilitation Thesis, Ghent, 1994.Google Scholar
  6. K. Gürlebeck and W. Sprößig:Quaternionic and Clifford calculus for Engineers and Physicists. Chichester, John Wiley &. Sons, 1997.MATHGoogle Scholar
  7. H. Leutwiler: Modified Clifford analysis.Complex Variables 17 (1992), 153–171.MathSciNetMATHGoogle Scholar
  8. Loo-Keng Hua:Starting with the unit circle. Springer-Verlag, New-York Inc., 1981.MATHGoogle Scholar
  9. J. Ryan: Properties of Isolated Singularities of some Function taking Values in Real Clifford Algebras.Math. Proc. Camb. Philos. Soc. 95 (1982), 277–298.CrossRefGoogle Scholar

Copyright information

© Birkhauser-Verlag AG 2001

Authors and Affiliations

  • P. Cerejeiras
    • 1
  1. 1.Departamento de MatemáticaUniversidade de AveiroAveiroPortugal

Personalised recommendations