Macromolecular Research

, Volume 14, Issue 4, pp 483–485 | Cite as

Micro-patterned polydiacetylene vesicle chips for detecting protein-protein interactions

  • Kyung-Woo Kim
  • Hyun Choi
  • Gil Sun Lee
  • Dong June Ahn
  • Min-Kyu Oh
  • Jong-Man Kim


In conclusion, micro-patterned PDA vesicles were proved as a biosensor to detect a protein-protein interaction. The vesicles were conjugated with primary antibodies and immobilized on glass slides as an array form. The fluorescence level of the PDA vesicles was changed by proteinprotein interactions between primary and secondary antibodies. This experiment proves that the micro-patterned PDA vesicles are useful to detect protein level interactions and can serve as a novel substrate to develop a protein chip.


Fluorescence Level Protein Chip Green Filter Ondary Antibody Thin Lipid Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D. J. Ahn, E. H. Chae, G. S. Lee, H. Y. Shim, T. E. Chang, K. D. Ahn, and J. M. Kim,J. Am. Chem. Soc.,125, 8976 (2003)CrossRefGoogle Scholar
  2. (2).
    A. Berman, D. J. Ahn, A. Lio, M. Salmeron, A. Reichert, and D. Charych,Science,269, 515 (1995).CrossRefGoogle Scholar
  3. (3).
    J. M. Kim, E. K. Ji, S. M. Woo, H. W. Lee, and D. J. Ahn,Adv. Mater.,15, 1118 (2003).CrossRefGoogle Scholar
  4. (4).
    R. W. Carpick, T. M. Mayer, D. Y. Sasaki, and A. R. Burns,Langmuir,16, 4639 (2000).CrossRefGoogle Scholar
  5. (5).
    D. Charych, Q. Cheng, A. Reichert, G. Kuziemko, M. Stroh, J. O. Nagy, W. Spevak, and R. C. Stevens,Chem. Biol.,3, 113 (1996).CrossRefGoogle Scholar
  6. (6).
    S. Y. Okada, R. Jelinek, and D. Charych,Angew. Chem. Int. Edit.,38, 655 (1999).CrossRefGoogle Scholar
  7. (7).
    B. L. Ma, Y. Fan, L. G. Zhang, X. G. Kong, Y. J. Li, and J. H. Li,Colloid Surface B,27, 209 (2003).CrossRefGoogle Scholar
  8. (8).
    M. Rangin and A. Basu,J. Am. Chem. Soc.,126, 5038 (2004).CrossRefGoogle Scholar
  9. (9).
    C. G. Wang and Z. F. Ma,Anal. Bioanal. Chem.,382, 1708 (2005).CrossRefGoogle Scholar
  10. (10).
    J. J. Pan and D. Charych,Langmuir,13, 1365 (1997).CrossRefGoogle Scholar
  11. (11).
    S. Kolusheva, R. Kafri, M. Katz, and R. Jelinek,J. Am. Chem. Soc.,123, 417 (2001).CrossRefGoogle Scholar
  12. (12).
    I. Gill and A. Ballesteros,Angew. Chem. Int. Edit.,42, 3264 (2003).CrossRefGoogle Scholar
  13. (13).
    Y. L. Su, J. R. Li, and L. Jiang,Colloid Surface B,38, 29 (2004).CrossRefGoogle Scholar
  14. (14).
    H. Y. Shim, S. H. Lee, D. J. Ahn, K. D. Ahn, and J. M. Kim,Mat. Sci. Eng. C,24, 157 (2004).CrossRefGoogle Scholar
  15. (15).
    J. M. Kim, Y. B. Lee, D. H. Yang, J. S. Lee, G. S. Lee, and D. J. Ahn,J. Am. Chem. Soc.,127, 17580 (2005).CrossRefGoogle Scholar
  16. (16).
    Y. K. Jung, H. K. Park, and J.-M. Kim,Biosens. Bioelectron.,21, 1536 (2006).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2006

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.Department of Chemical EngineeringHanyang UniversitySeoulKorea

Personalised recommendations