Skip to main content
Log in

Preparation of electrospun oxidized cellulose mats and theirin vitro degradation behavior

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This paper investigated the effect of biodegradation behavior on the oxidation of cellulose nanofiber mats. The cellulose mats were produced through electrospinning. The diameter of an electrospun fiber varied from 90 to 240 nm depending on the electrospinning parameters, such as the solution concentration, needle diameter, and rotation speed of a grounded collector. Oxidized cellulose (OC) mats containing different carboxyl contents were prepared using NO2 as an oxidant. The total carboxyl content of the cellulose nanofiber mats obtained after oxidation for 20 h was 20.6%. The corresponding carboxyl content was important from a commercial point of view because OC containing 16–24% carboxyl content are used widely in the medical field as a form of powder or knitted fabric. Degradation tests of the OC mats were performed at 37°C in phosphate-buffered saline (pH 7.4). Microscopy techniques were introduced to study the morphological properties and the degradation behavior of the OC mats. Morphological changes of the mats were visualized using optical microscopy. Within 4 days of exposure to PBS, the weight loss of the OC mats was >90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. H. Reneker and I. Chun,Nanotechnology,7, 216 (1996).

    Article  CAS  Google Scholar 

  2. J. M. Deitzel, W. Kosik, S. H. McKnight, N. C. B. Ten, J. M. Desimone, and S. Crette,Polymer,43, 1025 (2002).

    Article  CAS  Google Scholar 

  3. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin,Polymer,40, 7397 (1999).

    Article  CAS  Google Scholar 

  4. A. Fertala, W. B. Han, and F. K. Ko,J. Biomed. Mater. Res.,57, 48 (2001).

    Article  CAS  Google Scholar 

  5. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof,Macromolecules,33, 2989 (2000).

    Article  CAS  Google Scholar 

  6. J. D. Stitzel, K. Pawlowski, G. E. Wnek, D. G. Simpson, and G. L. Bowlin,J. Biomater. Appl.,15, 1 (2001).

    Google Scholar 

  7. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin,J. Macromol. Sci.,38, 1231 (2001).

    Google Scholar 

  8. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai,J. Biomed. Mater. Res.,67, 675 (2003).

    Article  Google Scholar 

  9. E. Zussman, A. L. Yarin, and D. Weihs,Experiments in Fluids,33, 315 (2002).

    Google Scholar 

  10. A. Formhals, GB Pat. 364780 (1929).

  11. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna,Composites Science and Technology,63, 2223 (2003).

    Article  CAS  Google Scholar 

  12. P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin,AIChE J.,45, 190 (1999).

    Article  CAS  Google Scholar 

  13. L. Gary, K. J. Bowlin, and E. D. Pawlowski, inTissue Engineering and Biodegradable Equivalents: Scientific and Clinical Application, K. U. Lewandrowski, L. W. Donald, J. T. Debra, D. G. Joseph, J. Y. Michael, and E. A. David, Eds., Marcel Dekker, New York, 2002, pp 165–78.

    Google Scholar 

  14. S. A. Athreya and D. C. Martin,Sensor. Actuat. A-Phys.,72, 203 (1999).

    Article  Google Scholar 

  15. C. J. Buchko, M. J. Slattery, K. M. Kozloff, and D. C. Martin,J. Mat. Res.,15, 231 (2000).

    Article  CAS  Google Scholar 

  16. C. J. Buchko, K. M. Kozloff, and D. C. Martin,Biomaterials,22, 1289 (2001).

    Article  CAS  Google Scholar 

  17. J. C. Pommier, J. Poustis, C. Baquey, and D. Chauveaux, Fr. Pat. 8610331 (1986); Eur. Pat. 0256906 A1 (1987); U. S. Pat. 4904258 (1990).

  18. P. L. Granja, M. A. Barbosa, L. Pouységu, B. De Jéso, and C. Baquey inFrontiers in Biomedical Polymers Applications 2, R. Ottenbrite, Ed., Technomic Press, Lancaster, PA, USA, 1999, pp 195–225.

    Google Scholar 

  19. M. Martson, J. Viljanto, T. Hurme, and P. Saukko,Eur. Surg. Res.,30, 426 (1998).

    Article  CAS  Google Scholar 

  20. U. Gross, C. Muller-Mai, and C. Voigt,Fourth World Biomaterials Congress, April, Berlin, Germany, 1992, p. 192.

  21. D. Chauveaux, C. Barbie, X. Barthe, C. Baquey, and J. Poustis,Clin. Mater.,5, 251 (1990).

    Article  Google Scholar 

  22. Y. Ikada, inCellulose: Structural and Functional Aspects, J. F. Kennedy, G. O. Phillips, and P. A. Williams, Eds., Ellis Horwood, Chichester, UK, 1989, pp 447–455.

    Google Scholar 

  23. T. Miyamoto, S. Takahashi, H. Ito, H. Inagaki, and Y. Noishiki,J. Biomed. Mater. Res.,23, 125 (1989).

    Article  CAS  Google Scholar 

  24. G. Franz,Adv. Polym. Sci.,76, 1 (1986).

    Article  Google Scholar 

  25. B. Philipp, W. Bock, and F. Schierbaum,J. Polym. Sci. Polym. Symp.,66, 83 (1979).

    Article  CAS  Google Scholar 

  26. G. S. Banker and V. Kumar, U. S. Pat. 5,405,953 (1995).

  27. D. M. Wiseman, L. Saferstein, and S. Wolf, U. S. Pat. 6,500,777 B1 (2002).

  28. P. N. Galgut,Biomaterials,11, 561 (1990).

    Article  CAS  Google Scholar 

  29. T. Röder and B. Morgenstern,Polymer,40, 4143 (1999).

    Article  Google Scholar 

  30. B. Franklin and S. Lowell, U. S. Pat. 5,180,398 (1993).

  31. V. Kumar and T. Yang,Carbohydrate Polymer,48, 403 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khil, M.S., Kim, H.Y., Kang, Y.S. et al. Preparation of electrospun oxidized cellulose mats and theirin vitro degradation behavior. Macromol. Res. 13, 62–67 (2005). https://doi.org/10.1007/BF03219016

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219016

Keywords

Navigation