Advertisement

Macromolecular Research

, Volume 13, Issue 1, pp 62–67 | Cite as

Preparation of electrospun oxidized cellulose mats and theirin vitro degradation behavior

  • Myung Seob Khil
  • Hak Yong Kim
  • Young Sic Kang
  • Ho Ju Bang
  • Douk Rae Lee
  • Jae Kyun Doo
Article

Abstract

This paper investigated the effect of biodegradation behavior on the oxidation of cellulose nanofiber mats. The cellulose mats were produced through electrospinning. The diameter of an electrospun fiber varied from 90 to 240 nm depending on the electrospinning parameters, such as the solution concentration, needle diameter, and rotation speed of a grounded collector. Oxidized cellulose (OC) mats containing different carboxyl contents were prepared using NO2 as an oxidant. The total carboxyl content of the cellulose nanofiber mats obtained after oxidation for 20 h was 20.6%. The corresponding carboxyl content was important from a commercial point of view because OC containing 16–24% carboxyl content are used widely in the medical field as a form of powder or knitted fabric. Degradation tests of the OC mats were performed at 37°C in phosphate-buffered saline (pH 7.4). Microscopy techniques were introduced to study the morphological properties and the degradation behavior of the OC mats. Morphological changes of the mats were visualized using optical microscopy. Within 4 days of exposure to PBS, the weight loss of the OC mats was >90%.

Keywords

electrospun oxidized cellulose mats electrospinning carboxyl content swelling degradation behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. H. Reneker and I. Chun,Nanotechnology,7, 216 (1996).CrossRefGoogle Scholar
  2. (2).
    J. M. Deitzel, W. Kosik, S. H. McKnight, N. C. B. Ten, J. M. Desimone, and S. Crette,Polymer,43, 1025 (2002).CrossRefGoogle Scholar
  3. (3).
    C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin,Polymer,40, 7397 (1999).CrossRefGoogle Scholar
  4. (4).
    A. Fertala, W. B. Han, and F. K. Ko,J. Biomed. Mater. Res.,57, 48 (2001).CrossRefGoogle Scholar
  5. (5).
    L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof,Macromolecules,33, 2989 (2000).CrossRefGoogle Scholar
  6. (6).
    J. D. Stitzel, K. Pawlowski, G. E. Wnek, D. G. Simpson, and G. L. Bowlin,J. Biomater. Appl.,15, 1 (2001).Google Scholar
  7. (7).
    E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin,J. Macromol. Sci.,38, 1231 (2001).Google Scholar
  8. (8).
    M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai,J. Biomed. Mater. Res.,67, 675 (2003).CrossRefGoogle Scholar
  9. (9).
    E. Zussman, A. L. Yarin, and D. Weihs,Experiments in Fluids,33, 315 (2002).Google Scholar
  10. (10).
    A. Formhals, GB Pat. 364780 (1929).Google Scholar
  11. (11).
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna,Composites Science and Technology,63, 2223 (2003).CrossRefGoogle Scholar
  12. (12).
    P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin,AIChE J.,45, 190 (1999).CrossRefGoogle Scholar
  13. (13).
    L. Gary, K. J. Bowlin, and E. D. Pawlowski, inTissue Engineering and Biodegradable Equivalents: Scientific and Clinical Application, K. U. Lewandrowski, L. W. Donald, J. T. Debra, D. G. Joseph, J. Y. Michael, and E. A. David, Eds., Marcel Dekker, New York, 2002, pp 165–78.Google Scholar
  14. (14).
    S. A. Athreya and D. C. Martin,Sensor. Actuat. A-Phys.,72, 203 (1999).CrossRefGoogle Scholar
  15. (15).
    C. J. Buchko, M. J. Slattery, K. M. Kozloff, and D. C. Martin,J. Mat. Res.,15, 231 (2000).CrossRefGoogle Scholar
  16. (16).
    C. J. Buchko, K. M. Kozloff, and D. C. Martin,Biomaterials,22, 1289 (2001).CrossRefGoogle Scholar
  17. (17).
    J. C. Pommier, J. Poustis, C. Baquey, and D. Chauveaux, Fr. Pat. 8610331 (1986); Eur. Pat. 0256906 A1 (1987); U. S. Pat. 4904258 (1990).Google Scholar
  18. (18).
    P. L. Granja, M. A. Barbosa, L. Pouységu, B. De Jéso, and C. Baquey inFrontiers in Biomedical Polymers Applications 2, R. Ottenbrite, Ed., Technomic Press, Lancaster, PA, USA, 1999, pp 195–225.Google Scholar
  19. (19).
    M. Martson, J. Viljanto, T. Hurme, and P. Saukko,Eur. Surg. Res.,30, 426 (1998).CrossRefGoogle Scholar
  20. (20).
    U. Gross, C. Muller-Mai, and C. Voigt,Fourth World Biomaterials Congress, April, Berlin, Germany, 1992, p. 192.Google Scholar
  21. (21).
    D. Chauveaux, C. Barbie, X. Barthe, C. Baquey, and J. Poustis,Clin. Mater.,5, 251 (1990).CrossRefGoogle Scholar
  22. (22).
    Y. Ikada, inCellulose: Structural and Functional Aspects, J. F. Kennedy, G. O. Phillips, and P. A. Williams, Eds., Ellis Horwood, Chichester, UK, 1989, pp 447–455.Google Scholar
  23. (23).
    T. Miyamoto, S. Takahashi, H. Ito, H. Inagaki, and Y. Noishiki,J. Biomed. Mater. Res.,23, 125 (1989).CrossRefGoogle Scholar
  24. (24).
    G. Franz,Adv. Polym. Sci.,76, 1 (1986).CrossRefGoogle Scholar
  25. (25).
    B. Philipp, W. Bock, and F. Schierbaum,J. Polym. Sci. Polym. Symp.,66, 83 (1979).CrossRefGoogle Scholar
  26. (26).
    G. S. Banker and V. Kumar, U. S. Pat. 5,405,953 (1995).Google Scholar
  27. (27).
    D. M. Wiseman, L. Saferstein, and S. Wolf, U. S. Pat. 6,500,777 B1 (2002).Google Scholar
  28. (28).
    P. N. Galgut,Biomaterials,11, 561 (1990).CrossRefGoogle Scholar
  29. (29).
    T. Röder and B. Morgenstern,Polymer,40, 4143 (1999).CrossRefGoogle Scholar
  30. (30).
    B. Franklin and S. Lowell, U. S. Pat. 5,180,398 (1993).Google Scholar
  31. (31).
    V. Kumar and T. Yang,Carbohydrate Polymer,48, 403 (2002).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2005

Authors and Affiliations

  • Myung Seob Khil
    • 1
  • Hak Yong Kim
    • 1
  • Young Sic Kang
    • 1
  • Ho Ju Bang
    • 1
  • Douk Rae Lee
    • 1
  • Jae Kyun Doo
    • 2
  1. 1.Department of Textile EngineeringChonbuk National UniversityChonju, ChonbukKorea
  2. 2.Department of General Gynecology and Obstetrics med. SchoolChonbuk National UniversityChonju, ChonbukKorea

Personalised recommendations