Macromolecular Research

, Volume 12, Issue 1, pp 119–126 | Cite as

Influence of silane coupling agents on the interlaminar and thermal properties of woven glass fabric/nylon 6 composites

  • Donghwan Cho
  • Suk Hyang Yun
  • Junkyung Kim
  • Soonho Lim
  • Min Park
  • Sang-Soo Lee
  • Geon-Woong Lee


In this study, the influence of silane coupling agents, featuring different organo-functional groups on the interlaminar and thermal properties of woven glass fabric-reinforced nylon 6 composites, has been by means of shortbeam shear tests, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis. The results indicate that the fiber-matrix interfacial characteristics obtained using the different analytical methods agree well with each other. The interlaminar shear strengths (ILSS) of glass fabric/nylon 6 composites sized with various silane coupling agents are significantly improved in comparison with that of the composite sized commercially. ILSS of the composites increases in the order: Z-6076 with chloropropyl groups in the silanes >Z-6030 with methacrylate groups >Z-6020 with diamine groups; this trend is similar to that of results found in an earlier study of interfacial shear strength. The dynamic mechanical properties, the fracture surface observations, and the thermal stability also support the interfacial results. The improvement of the interfacial properties may be ascribed to the different chemical reactivities of the reactive amino end groups of nylon 6 and the organo-functional groups located at the ends of the silane chains, which results from the increased chemical reactivity in order chloropropyl >methacrylate >diamine.


interlaminar property dynamical mechanical property woven glass fabric/nylon 6 composite silane coupling agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    L. T. Drzal,SAMPE J.,Sept./Oct., 7 (1983).Google Scholar
  2. (2).
    J. K. Kim and Y.-W. Ma,Engineered Interfaces in Fiber-Reinforced Composites, Elsevier, Amsterdam, 1998.Google Scholar
  3. (3).
    J. L. Thomason and L. J. Adzima,Composites Part A,32, 313 (2001).CrossRefGoogle Scholar
  4. (4).
    J. E. Ritter, J. C. Learned, G. S. Jacome, T. P. Russel, and T. J. Lardner,J. Adhesion,76, 335 (2001).CrossRefGoogle Scholar
  5. (5).
    E. P. Plueddemann,Silane Coupling Agents, Plenum Press, New York, 1982.Google Scholar
  6. (6).
    B. K. Larson and L. T. Drzal,Composites,25, 711 (1994).CrossRefGoogle Scholar
  7. (7).
    D. J. Vaughan, inHandbook of Composites, S. T. Peters, Ed., Chapman & Hall, London, 1998, Chapter 7.Google Scholar
  8. (8).
    H. Al-Moussawi, E. K. Drawn, and L. T. Drzal,Polym. Comp.,14, 195 (1003).CrossRefGoogle Scholar
  9. (9).
    D. M. Laura, H. Keskkula, J. W. Barlow, and D. R. Paul,Polymer,43, 4673 (2002).CrossRefGoogle Scholar
  10. (10).
    P. J. Herrera-Franco and L. T. Drzal,Composites,23, 2 (1992).CrossRefGoogle Scholar
  11. (11).
    L. T. Drzal, P. J. Herrera-Franco, and H. Ho, inComprehensive Composite Materials, Elsevier, Amsterdam, 2000, Vol. 5, pp 71.CrossRefGoogle Scholar
  12. (12).
    S. H. Yun, D. Cho, J. Kim, S. Lim, G.-W. Lee, M. Park, and S.-S. Lee,J. Mater. Sci. Lett.,22, 1591 (2003).CrossRefGoogle Scholar
  13. (13).
    D. Cho, Y. Choi, and L. T. Drzal,J. Adhesion,79, 1 (2003).CrossRefGoogle Scholar
  14. (14).
    M. L. Costa, S. F. M. de Almeida, and M. C. Rezende,Comp. Sci. Tech.,61, 2101 (2001).CrossRefGoogle Scholar
  15. (15).
    M. S. Wilenski,The Improvement of the Hydrothermal and Mechanical Properties of Bismaleimide and K3B/IM7 Carbon Fiber Composites Through a Systematic Study of the Interphase, Ph.D. Dissertation, Michigan State University, 1997.Google Scholar
  16. (16).
    A. Pegorett, M. Fidanza, C. Migliaresi, and A. T. DiBennedetto,Composites Part A,29A, 283 (1998).CrossRefGoogle Scholar
  17. (17).
    J. L. Thomason,Polym. Comp.,11, 105 (1990).CrossRefGoogle Scholar
  18. (18).
    I. Fisher, A. Siegmann, and M. Narkis,Polym. Comp.,23, 464 (2002).CrossRefGoogle Scholar
  19. (19).
    Y. Choi,Dynamic Mechanical Properties of LaRC PETI-5 Polyimide, the Blends and the Composites, MS Thesis, Kumoh National University of Technology, Korea, 2001.Google Scholar
  20. (20).
    L. E. Neilson,Mechanical Properties of Polymer and Composites, Marcel Dekker Inc., New York, 1974.Google Scholar
  21. (21).
    P. S. Chua,SAMPE Quart.,18, 10 (1987).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2004

Authors and Affiliations

  • Donghwan Cho
    • 1
  • Suk Hyang Yun
    • 1
  • Junkyung Kim
    • 2
  • Soonho Lim
    • 2
  • Min Park
    • 2
  • Sang-Soo Lee
    • 2
  • Geon-Woong Lee
    • 2
  1. 1.Department of Polymer Science and EngineeringKumoh National Institute of TechnologyKumi, KyungbukKorea
  2. 2.Polymer Hybrid Research CenterKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations