Macromolecular Research

, Volume 12, Issue 1, pp 46–52 | Cite as

Anti-complement effects of anion-substituted poly(vinyl alcohol) membranes

  • Kyu Eun Ryu
  • Hyangshuk Rhim
  • Chong Won Park
  • Heung Jae Chun
  • Seung Hwa Hong
  • Young Chai Kim
  • Young Moo Lee


In a continuation of our previous studies on blood compatibility profiles of anion-substituted poly(vinyl alcohol) (PVA) membranes, in which hydroxyl groups have been replaced with carboxymethyl (C-PVA) and sulfonyl groups (S-PVA), we have studied the activation of complement components and the changes in white cell and platelet countin vitro and compared them with those of unmodified PVA, Cuprophane, and low-density polyethylene. Complement activation of fluid phase components, C3a, Bb, iC3b, and SC5b-9, and of bound phases, C3c, C3d, and SC5b-9, were assessed by enzyme-linked immunosorbent assay (ELISA) and immunoblot, respectively. The changes in the number of white cells and platelets following complement activation were counted using a Coulter counter. C-PVA and S-PVA activated C3 to a lesser extent than did PVA, which we attribute to the diminished level of surface nucleophiles of the samples. In addition, C- and S-PVA exhibit increased inhibition of Bb production, resulting in a decrease in the extent of C5 activation. Consequently, because of the reduced activation of C3 and C5, C- and S-PVA samples cause marked decreases in the SC5b-9 levels in plasma. We also found that the negatively charged sulfonate and carboxylate groups of the samples cause a greater extent of adsorbtion of the positively charged anaphylatoxins, C3a and C5a, because of strong electrostatic attraction, which in turn provides an inhibition of chemotaxis and activation of leukocytes. The ability to inhibit complement production, together with the binding ability of anaphylatoxins of the C- and S-PVA samples, leads to a prominent decrease in lysis of leukocytes as well as activation of platelets.


carboxymethylated poly(vinyl alcohol) sulfonated poly(vinyl alcohol) hemodialysis membrane complement activation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. M. Galletti, C. K. Colton, and M. J. Lysaght,Artificial Kidney in The Biomedical Engineering Handbook, J.D. Bronzino, Ed., CRC Press Inc., 1995, pp 1898–1924.Google Scholar
  2. (2).
    R. J. Johnson, M. D. Lelah, T.M. Sutliff, and D. R. Boggs,Blood Purif.,8, 318 (1990).CrossRefGoogle Scholar
  3. (3).
    P. M. Galletti, P. Aebischer, and M. J. Lysaght,ASAIO J.,41, 49 (1995).Google Scholar
  4. (4).
    Y. Ikada, H. Iwata, F. Horii, T. Matsunaga, M. Tanigushi, and M. Suzuki,J. Biomed. Mater. Res.,15, 697 (1981).CrossRefGoogle Scholar
  5. (5).
    N. A. Hoenich, C. Woffindin, S. Stamp, S. J. Roberts, and J. Turnbull,Biomaterials,18, 1299 (1997).CrossRefGoogle Scholar
  6. (6).
    J. R. Frautschi, R. C. Eberhart, J. A. Hubbel, B. D. Clark, and J. A. Gelfaud,J. Biomater. Sci. Polym. Ed.,7, 707 (1996).CrossRefGoogle Scholar
  7. (7).
    A. Finch,Poly(vinyl alcohol)-Development, John Wiley & Sons Ltd., New Work, 1992.Google Scholar
  8. (8).
    H. J. Chun, J. J. Kim, and K. Y. Kim,Polym. J.,22, 347 (1990).CrossRefGoogle Scholar
  9. (9).
    H. J. Chun, J. J. Kim, S. H. Lee, K. Y. Kim, and U. Y. Kim,Polym. J.,22, 477 (1990).CrossRefGoogle Scholar
  10. (10).
    K. E. Ryu, H. Rhim,C. W. Park, H. J. Chun, J. J. Kim, and Y. M. Lee,Macromol. Res.,11, 451 (2003).CrossRefGoogle Scholar
  11. (11).
    T. S. Suh, C. K. Joo, Y. C. Kim, M. S. Lee, H. K. Lee, B. Y. Choe, H. J. Chun,J. Appl. Polym. Sci.,85, 2361 (2002).CrossRefGoogle Scholar
  12. (12).
    G. S. Khang, J. M. Rhee, J. H. Lee, I. W. Lee, and H. B. Lee,Korea Polym. J.,8, 276 (2000).Google Scholar
  13. (13).
    G. S. Khang, M. K. Choi, J. M Rhee, S. J. Lee, H. B. Lee, Y. Iwasaki, N. Nakabayashi, K. Ishihara,Korea Polym. J.,9, 107 (2001).Google Scholar
  14. (14).
    S. Y. Nam, H. J. Chun, and Y. M. Lee,J. Appl. Polym. Sci.,72, 241 (1999).CrossRefGoogle Scholar
  15. (15).
    G. Beamson and D. Briggs, inHigh Resolution XPS of Organic Polymers, John Wiley & Sons Ltd., New Work, 1992.Google Scholar
  16. (16).
    R. J. Johnson,Immunology and the Complement System in Biomaterials Science, B. D. Ratner, A. S. Hoffman, F. R. Schoen, and J. E. Lemons, Eds., Academic Press, San Diego, 1996, pp 173–188.Google Scholar
  17. (17).
    C. H. Gemmell,J. Biomed. Mater. Res.,37, 474 (1997).CrossRefGoogle Scholar
  18. (18).
    J. Wettero, A. Askendal, T. Bengtsson, and P. Tengvall,Biomaterials,23, 981 (2002).CrossRefGoogle Scholar
  19. (19).
    M. Berger, B. Broxup, and M. V. Sefton,J. Mater. Sci.: Mater. Med.,5, 622 (1994).CrossRefGoogle Scholar
  20. (20).
    S. Miyagawa, R. Shirakura, G. Matsumiya, N. Fukushima, S. Nakata, H. Matsuda, M. Matsumoto, H. Kitamura, and T. Seya,Transplantation,55, 709 (1993).CrossRefGoogle Scholar
  21. (21).
    M. Mauzac, F. Maillet, J. Jozeforvicz, and M. D. Kazatchkine,Biomaterials,6, 61 (1985).CrossRefGoogle Scholar
  22. (22).
    Y. Matsuki, K. Suzuki, M. Kawakami, T. Ishizuka, T. Hidaka, and H. Nakamura,J. Clin. Apheresis,13, 108 (1998).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2004

Authors and Affiliations

  • Kyu Eun Ryu
    • 2
  • Hyangshuk Rhim
    • 2
  • Chong Won Park
    • 1
  • Heung Jae Chun
    • 2
  • Seung Hwa Hong
    • 3
  • Young Chai Kim
    • 4
  • Young Moo Lee
    • 4
  1. 1.Department of Biomedical Sciences, College of MedicineCatholic UniversitySeoulKorea
  2. 2.Division of Hematology, Department of Internal Medicine, College of MedicineCatholic UniversitySeoulKorea
  3. 3.Blood Products Division, Biologics Evaluation DepartmentKorea Food and Drug AdministrationSeoulKorea
  4. 4.School of Chemical Engineering, College of EngineeringHanyang UniversitySeoulKorea

Personalised recommendations