Macromolecular Research

, Volume 16, Issue 1, pp 6–14 | Cite as

Rheology of PP/Clay hybrid produced by supercritical CO2 assisted extrusion



Polypropylene (PP)-layered silicate nanocomposites were developed using a new processing method involving a supercritical carbon dioxide (scCO2)-assisted co-rotating twin-screw extrusion process. The nanocomposites were prepared through two step extrusion processes. In the first step, the PP/clay mixture was extruded with CO2 injected into the barrel of the extruder and the resulting foamed extrudate was cooled and pelletized. In the second step, the foamed extrudate was extruded with venting to produce the final PP/clay nanocomposites without CO2. In this study, organophilic-clay and polypropylene matrix were used. Maleic anhydride grafted polypropylene (PPg-MA) was used as a compatibilizer. This study focused on the effect of scCO2 on the dispersion characteristics of the clays into a PP matrix and the rheological properties of the layered silicate based PP nanocomposites. The dispersion properties of clays in the nanocomposites as well as the rheological properties of the nanocomposites were examined as a function of the PP-g-MA concentration. The degree of dispersion of the clays in the nanocomposites was analyzed by X-ray diffraction and transmission electron microscope. Various rheological properties of the nanocomposites were measured using a rotational rheometer. In the experimental results, the scCO2 assisted continuous manufacturing extrusion system was used to successfully produce the organophilic-clay filled PP nanocomposites. It was found that scCO2 had a measurable effect on the clay dispersion in the polymer matrix and the melt intercalation of a polymer into clay layers.


nanocomposites rheology polypropylene extrusion supercritical fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    E. P. Giannelis,Adv. Mater.,8, 29 (1996).CrossRefGoogle Scholar
  2. (2).
    Y. Kojima, A. Usuki, M. Kawasumi, Y. Fukushima, A. Okada, T. Kurauchi, and O. Kamigaito,J. Mater. Res.,8, 1179 (1993).CrossRefGoogle Scholar
  3. (3).
    Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito,J. Mater. Res.,8, 1185 (1993).CrossRefGoogle Scholar
  4. (4).
    L. M. Liu, Z. N. Qi, and X. G. Zhu,J. Appl. Polym. Sci.,71, 1133 (1999).CrossRefGoogle Scholar
  5. (5).
    S. H. Wu, F. Y. Wang, C. M. Ma, W. C. Chang, C. T. Kuo, H. C. Kuan, and W. J. Chen,Mater. Lett.,49, 327 (2001).CrossRefGoogle Scholar
  6. (6).
    D. M. Lincoln, R. A. Vaia, Z. G. Wang, and B. S. Hsiao,Polymer,42, 1621 (2001).CrossRefGoogle Scholar
  7. (7).
    F. J. Medellin-Rodriguez, C. Burger, B. S. Hsiao, B. Chu, R. A. Vaia, and S. Phillips,Polymer,42, 9015 (2001).CrossRefGoogle Scholar
  8. (8).
    X. Liu and Q. Wu,Polymer,43, 1933 (2002).CrossRefGoogle Scholar
  9. (9).
    M. R. Kamal, N. K. Borse, and A. G. Rejon,Polym. Eng. Sci.,42, 1883 (2002).CrossRefGoogle Scholar
  10. (10).
    P. U. Arocha, C. Mehler, J. E. Puskas, and V. Altstadt,Polymer,44, 2441 (2003).CrossRefGoogle Scholar
  11. (11).
    J. H. Park, W. N. Kim, H. S. Kye, S. S. Lee, M. Park, J. K. Kim, and S. H. Lim,Macromol. Res.,13, 367 (2005).CrossRefGoogle Scholar
  12. (12).
    D. B. Zax, D. K. Yang, R. A. Santos, H. Hegmann, E. P. Giannelis, and E. Manias,J. Chem. Phys.,112, 2945 (2000).CrossRefGoogle Scholar
  13. (13).
    R. A. Vaia, H. Ishii, and E. P. Giannelis,Chem. Mater.,5, 1694 (1993).CrossRefGoogle Scholar
  14. (14).
    A. Alelah and M. Moet,J. Mater. Sci.,31, 3589 (1996).Google Scholar
  15. (15).
    M. Sikka, L. N. Cerini, S. S. Ghosh, and K. I. Winey,J. Polym. Sci.; Part B: Polym. Phys.,34, 1443 (1996).CrossRefGoogle Scholar
  16. (16).
    M. Laus, M. Camerani, M. Lelli, K. Sparnacci, F. Sandrolini, and O. F. Francescangeli,J. Mater. Sci.,33, 2883 (1998).CrossRefGoogle Scholar
  17. (17).
    N. Hasegawa, H. Okamoto, M. Kawasumi, and A. Usuki,J. Appl. Polym. Sci.,74, 3359 (1999).CrossRefGoogle Scholar
  18. (18).
    M. W. Noh and D. C. Lee,Polym. Bull.,42, 619 (1999).CrossRefGoogle Scholar
  19. (19).
    X. Fu and S. Qutubuddin,Polymer,42, 807 (2001).CrossRefGoogle Scholar
  20. (20).
    F. L. Beyer, N. C. B. Tan, A. Dasgupta, and M. E. Galvin,Chem. Mater.,14, 2983 (2002).CrossRefGoogle Scholar
  21. (21).
    Y. C. Ke, C. Long, and Z. Qi,J. Appl. Polym. Sci.,71, 1139 (1999).CrossRefGoogle Scholar
  22. (22).
    C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong,J. Polym. Sci.; Part B: Polym. Phys.,40, 2661 (2002).CrossRefGoogle Scholar
  23. (23).
    P. B. Messersmith and E. P. Giannelis,J. Polym. Sci.; Part A: Polym. Chem.,33, 1047 (1995).CrossRefGoogle Scholar
  24. (24).
    G. Jimenez, N. Ogata, H. Kawai, and T. Ogihara,J. Appl. Polym. Sci.,64, 2211 (1997).CrossRefGoogle Scholar
  25. (25).
    R. Shima, L. A. Utracki, and A. Garcia-Rejon,Compos. Interfaces,8, 345 (2002).Google Scholar
  26. (26).
    T. M. Wu, J. C. Cheng, and M. C. Yan,Polymer,44, 2553 (2003).CrossRefGoogle Scholar
  27. (27).
    P. B. Messersmith and E. P. Giannelis,Chem. Mater.,6, 1719 (1994).CrossRefGoogle Scholar
  28. (28).
    T. Lan, P. D. Kaviratna, and T. J. Pinnavaia,Chem. Mater.,7, 2144 (1995).CrossRefGoogle Scholar
  29. (29).
    C. Zilg, R. Mulhaupt, and J. Finter,Macromol. Chem. Phys.,200, 661 (1999).CrossRefGoogle Scholar
  30. (30).
    X. Kornmann, H. Lindberg, and L. A. Berhlund,Polymer,42, 1303 (2001).CrossRefGoogle Scholar
  31. (31).
    O. Becker, R. Varley, and G. Simon,Polymer,43, 4365 (2002).CrossRefGoogle Scholar
  32. (32).
    J. H. Park and C. H. Jana,Polymer,44, 2091 (2003).CrossRefGoogle Scholar
  33. (33).
    A. Usuki, M. Kato, A. Okata, and T. Kurauchi,J. Appl. Polym. Sci.,63, 137 (1997).CrossRefGoogle Scholar
  34. (34).
    H. R. Fischer and L. H. Gielgens,Acta Polymerica,50, 122 (1999).CrossRefGoogle Scholar
  35. (35).
    J. U. Park, J. L. Kim, D. H. Kim, K, H, Ahn, and S. J. Lee,Macromol. Res.,14, 318 (2006).CrossRefGoogle Scholar
  36. (36).
    J. F. Brennecke,Nature,389, 333 (1997).CrossRefGoogle Scholar
  37. (37).
    G. Galgali, C. Ramesh, and A. Lele,Macromolecules,34, 852 (2001).CrossRefGoogle Scholar
  38. (38).
    J. G. Ryu, J. W. Lee, and H. Kim,Macromol. Res.,10, 187 (2002).CrossRefGoogle Scholar
  39. (39).
    J. Y. Kim, S. H. Kim, S. W. Kang, J. H. Chang, and S. H. Ahn,Macromol. Res.,14, 146 (2006).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2008

Authors and Affiliations

  • Sang Myung Lee
    • 1
  • Dong Cheol Shim
    • 1
  • Jae Wook Lee
    • 1
  1. 1.Applied Rheology Center, Department of Chemical EngineeringSogang UniversitySeoulKorea

Personalised recommendations