Advertisement

Macromolecular Research

, Volume 17, Issue 9, pp 666–671 | Cite as

Water-repellent macroporous carbon nanotube/elastomer nanocomposites by self-organized aqueous droplets

  • Bo Kyung Lim
  • Sun Hwa Lee
  • Ji Sun Park
  • Sang Ouk Kim
Article

Abstract

Water repellent elastomeric surfaces were fabricated successfully on SBS/MWNT nanocomposites films using the breath figure method and subsequent thermal treatment. The uniformly dispersed CNTs were found to play significant roles in tuning the size and ordering of the macroporous morphology at the nanocomposite surface as well as enhancing the mechanical properties of nanocomposites. In particular, the CNTs dispersed in a nanocomposite solution retarded the coarsening process of aqueous droplets during the breath figure process and decreased the pore size in the finally fabricated film. The water contact angle measurement showed that the double-scale structure comprised of self-organized macropores and surface the roughness induced by a thermal treatment produced a highly water-repellent nanocomposite surface.

Keywords

carbon nanotubes elastomer nanocomposites porous structure water-repellency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. Koerner, G. Rice, N. A. Pearce, M. Alexander, and R. A. Vaia,Nature,3, 115 (2004).CrossRefGoogle Scholar
  2. (2).
    L. Bokobza,Polymer,48, 4907 (2007).CrossRefGoogle Scholar
  3. (3).
    X. B. Xu, Z. M. Li, L. Shi, X. C. Bian, and Z. D. Xiang,Small,3, 408 (2007).CrossRefGoogle Scholar
  4. (4).
    B. S. Kim, K. D. Suh, and B. Kim,Macromol. Res.,16, 76 (2008).CrossRefGoogle Scholar
  5. (5).
    I. Park, M. Park, J. Kim, H. Lee, and M. S. Lee,Macromol. Res.,15, 498 (2007).Google Scholar
  6. (6).
    S. M. Liff, N. Kumer, and G. H. Mckinley,Nature,6, 76 (2007).CrossRefGoogle Scholar
  7. (7).
    R. H. Baughman,Science,308, 63 (2005).CrossRefGoogle Scholar
  8. (8).
    Y. Liu, K. J. Gilmore, J. Chen, V. Misoska, and G. G. Wallace,Chem. Mater.,19, 2721 (2007).CrossRefGoogle Scholar
  9. (9).
    R. Vaia,Nature,4, 429 (2005).CrossRefGoogle Scholar
  10. (10).
    S. V. Ahir and E. M. Terentjev,Nature,4, 491 (2005).CrossRefGoogle Scholar
  11. (11).
    H. J. Lee, Y. D. Lee, W. S. Cho, B. K. Ju, Y. H. Lee, J. H. Han, and J. K. Kim,Appl. Phys. Lett.,88, 093115 (2006).CrossRefGoogle Scholar
  12. (12).
    T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya,Science,321, 1468 (2008).CrossRefGoogle Scholar
  13. (13).
    R. Blossey,Nature,2, 301 (2003).CrossRefGoogle Scholar
  14. (14).
    X. Feng and L. Jiang,Adv. Mater.,18, 3063 (2006).CrossRefGoogle Scholar
  15. (15).
    H. Y. Lee, S. A. Yu, K. H. Jeong, and Y. J. Kim,Macromol. Res.,15, 547 (2007).Google Scholar
  16. (16).
    Y. Lee, S. H. Park, K. B. Kim, and J. K. Lee,Adv. Mater.,19, 2330 (2007).CrossRefGoogle Scholar
  17. (17).
    L. Jiang, Y. Zhao, and J. Zhai,Angew. Chem. Int. Ed.,43, 4338 (2004).CrossRefGoogle Scholar
  18. (18).
    L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu,Adv. Mater.,14, 1857 (2002).CrossRefGoogle Scholar
  19. (19).
    Y. Li, C. Li, S. O. Cho, G. Duan, and W. Cai,Langmuir,23, 9802 (2007).CrossRefGoogle Scholar
  20. (20).
    Y. Li, W. Z. Jia, Y. Y. Song, and X. H. Xia,Chem. Mater.,19, 5758 (2007).CrossRefGoogle Scholar
  21. (21).
    H. Li, Z. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, and D. Zhu,Angew. Chem. Int. Ed.,40, 1743 (2001).CrossRefGoogle Scholar
  22. (22).
    I. Woodward, W. C. E. Schofield, V. Roucoules, and J. P. S. Badyal,Langmuir,19, 3432 (2003).CrossRefGoogle Scholar
  23. (23).
    J. Genzer and K. Efimenko,Science,290, 2130 (2000).CrossRefGoogle Scholar
  24. (24).
    S. R. Coulson, I. Woodward, and J. P. S. Badyal,J. Phys. Chem. B,104, 8836 (2000).CrossRefGoogle Scholar
  25. (25).
    K. Tadanaga, J. Morinaga, A. Matsuda, and T. Minami,Chem. Mater.,12, 590 (2000).CrossRefGoogle Scholar
  26. (26).
    S. H. Lee, J. S. Park, C. M. Koo, B. K. Lim, and S. O. Kim,Macromol. Res.,16, 261 (2008).CrossRefGoogle Scholar
  27. (27).
    S. H. Lee, J. S. Park, B. K. Lim, and S. O. Kim,J. Appl. Polym. Sci.,110, 2345 (2008).CrossRefGoogle Scholar
  28. (28).
    H. T. Ham, I. J. Chung, Y. S. Choi, S. H. Lee, and S. O. Kim,J. Phys. Chem. B,110, 13959 (2006).CrossRefGoogle Scholar
  29. (29).
    J. S. Park, S. H. Lee, T. H. Han, and S. O. Kim,Adv. Funct. Mater.,17, 2315 (2007).CrossRefGoogle Scholar
  30. (30).
    H. Yabu and M. Shimomura,Chem. Mater.,17, 5231 (2005).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  • Bo Kyung Lim
    • 1
  • Sun Hwa Lee
    • 1
  • Ji Sun Park
    • 1
  • Sang Ouk Kim
    • 1
  1. 1.Department of Materials Science and Engineering, KAIST Institute for the NanocenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations