Macromolecular Research

, Volume 17, Issue 7, pp 533–537 | Cite as

Polycarprolactone ultrafine fiber membrane fabricated using a charge-reduced electrohydrodynamic process

  • GeunHyung Kim
  • Hyeon Yoon
  • HaengNam Lee
  • Gil-Moon Park
  • YoungHo Koh


This paper introduces a modified electrospinning system for biomedical wound-healing applications. The conventional electrospinning process requires a grounded electrode on which highly charged electrospun ultrafine fibers are deposited. Biomedical wound-healing membranes, however, require a very low charge and a low level of remnant solvent on the electrospun membrane, which the conventional process cannot provide. An electrohydrodynamic process complemented with field-controllable electrodes (an auxiliary electrode and guiding electrodes) and an air blowing system was used to produce a membrane, with a considerably reduced charge and low remnant solvent concentration compared to one fabricated using the conventional method. The membrane had a small average pore size (102 nm) and high porosity (85.1%) for prevention of bacterial contamination.In vivo tests on rats showed that these directly electrospun fibrous membranes produced using the modified electrospinning process supported the good healing of skin burns.


nanofibers electrospinning wound healing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. Doshi and D. H. Reneker,J. Electrostatics,35, 151 (1995).CrossRefGoogle Scholar
  2. (2).
    G. Viswanathan, S. Murugesan, V. Pushparaj, O. Nalamasu, P. M. Ajayan, and R. J. Linhardt,Biomacromolecules,7, 415 (2006).CrossRefGoogle Scholar
  3. (3).
    W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko,J. Biomed. Mater. Res.,60, 613 (2002).CrossRefGoogle Scholar
  4. (4).
    W. E. Teo and S. Ramakrishna,Nanotechnology,17, R89 (2006).CrossRefGoogle Scholar
  5. (5).
    D. W. Hutmacher,J. Biomater. Sci.,12, 107 (2001).CrossRefGoogle Scholar
  6. (6).
    J. Venugopal, L. L. Ma, and S. Ramakrishuna,Tissue Eng.,11, 847 (2005).CrossRefGoogle Scholar
  7. (7).
    R. Kessick, J. Fenn, and G. Tepper,Polymer,45, 2981 (2004).CrossRefGoogle Scholar
  8. (8).
    G. H. Kim,J. Polym. Sci. Part B: Polym. Phys.,44, 1426 (2006).CrossRefGoogle Scholar
  9. (9).
    G. H. Kim and W. Kim,Appl. Phys. Lett.,88, 23310 (2006).Google Scholar
  10. (10).
    G. H. Kim,Biomed. Mater.,3, 025010 (2008).CrossRefGoogle Scholar
  11. (11).
    H. A. Pohl,Dielectrophoresis, Cambridge University Press, New York, 1978.Google Scholar
  12. (12).
    G. H. Kim and W. Kim,Appl. Phys. Lett.,89, 013111 (2006).CrossRefGoogle Scholar
  13. (13).
    S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge,Phys. Rev. Lett.,90, 144 (2003).CrossRefGoogle Scholar
  14. (14).
    I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu,Biomacromolecules,5, 1428 (2004).CrossRefGoogle Scholar
  15. (15).
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna,Compos. Sci. Technol.,63, 2223 (2003).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  • GeunHyung Kim
    • 1
  • Hyeon Yoon
    • 1
  • HaengNam Lee
    • 1
  • Gil-Moon Park
    • 1
  • YoungHo Koh
    • 2
  1. 1.Department of Mechanical Engineering, College of EngineeringChosun UniversityGwangjuKorea
  2. 2.Ilsong Institute of Life Science, Hallym Medical SchoolHallym UniversityGyeonggi-doKorea

Personalised recommendations