Advertisement

Macromolecular Research

, Volume 17, Issue 7, pp 464–468 | Cite as

Preparation and cytotoxicity comparison of type a gelatin nanoparticles with recombinant human gelatin nanoparticles

  • Young-Wook Won
  • Yong-Hee Kim
Communications

Abstract

Gelatin nanoparticles derived from bovine or porcine have been developed as various types of drug delivery system, and they need to be cross-linked to maintain their physicochemical properties in aqueous environments. Although gelatin is a widely used material in pharmaceutical industries, the safety issue of animal-origin gelatins, such as transmissible mad cow disease and anaphylaxis, remains to be solved. The purpose of this study was to prepare type A gelatin (GA) nanoparticles by modified, two-step, desolvation method and compare the toxicity of the resulting GA nanoparticles with recombinant human gelatin (rHG) nanoparticles. The GA nanoparticles were characterized, and drug loading and release pattern were measured. FITC-BSA, a model protein, was efficiently loaded in the nanoparticles and then released in a biphasic and sustained release pattern without an initial burst. In particular, the cell viability of the GA nanoparticles was less than that of the rHG nanoparticles. This finding suggests that rHG nanoparticles should be considered as an alternative to animal-origin gelatin nanoparticles in order to minimize the safety problems.

Keywords

nanoparticles gelatin recombinant human gelatin protein drug drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. K. Vasir, M. K. Reddy, and V. D. Labhasetwar,Curr. Nanosci.,1, 47 (2005).CrossRefGoogle Scholar
  2. (2).
    J. S. Park and Y. W. Cho,Macromol. Res.,15, 513 (2007).Google Scholar
  3. (3).
    K. Zwiorek, J. Kloeckner, E. Wagner, and C. Coester,J. Pharm. Pharm. Sci.,7, 22 (2005).Google Scholar
  4. (4).
    J. J. Marty, R. C. Oppenheim, and P. Speiser,Pharm. Acta Helv.,53, 17 (1978).Google Scholar
  5. (5).
    C. A. Farrugia and M. J. Groves,J. Pharm. Pharmacol.,51, 643 (1999).CrossRefGoogle Scholar
  6. (6).
    S. Azarmi, Y. Huang, H. Chen, S. McQuarrie, D. Abrams, W. Roa, W. H. Finlay, G. G. Miller, and R. Löbenberg,J. Pharm. Pharmaceut. Sci.,9, 124 (2006).Google Scholar
  7. (7).
    J. S. Lee, J. K. Kim, S. R. Park, and Y. H. Chang,Macromol. Res.,15, 205 (2007).CrossRefGoogle Scholar
  8. (8).
    http://www.fibrogen.com/programs/fg-5009/.Google Scholar
  9. (9).
    S. Young, M. Wong, Y. Tabata, and A. G. Mikos,J. Control. Release,109, 256 (2005).CrossRefGoogle Scholar
  10. (10).
    H. C. Liang, W. H. Chang, K. J. Lin, and H. W. Sung,J. Biomed. Mater. Res.,65A, 271 (2003).CrossRefGoogle Scholar
  11. (11).
    H. W. Sung, D. M. Huang, W. H. Chang, R. N. Huang, and J. C. Hsu,J. Biomed. Mater. Res.,46, 520 (1999).CrossRefGoogle Scholar
  12. (12).
    Y. W. Won and Y. H. Kim,J. Control. Release,127, 154 (2008).CrossRefGoogle Scholar
  13. (13).
    C. Weber, C. Coester, J. Kreuter, and K. Langer,Int. J. Pharm.,194, 91 (2000).CrossRefGoogle Scholar
  14. (14).
    N. Dinauer, S. Balthasat, C. Weber, J. Kreuter, K. Langer, and H. von Briesen,Biomaterials,26, 5898 (2005).CrossRefGoogle Scholar
  15. (15).
    Y. M. Jeon, T. H. Lim, S. H. Kim, J. G. Kim, and M. S. Gong,Macromol. Res.,15, 17 (2007).CrossRefGoogle Scholar
  16. (16).
    C. S. Brazel and N. A. Peppas,Eur. J. Pharm. Biopharm.,49, 47 (2000).CrossRefGoogle Scholar
  17. (17).
    A. K. Bajpai and J. Choubey,J. Appl. Polym. Sci.,101, 2320 (2006).CrossRefGoogle Scholar
  18. (18).
    Y. Tabata and Y. Ikada,Adv. Drug. Deliver. Rev.,31, 287 (1998).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  1. 1.Department of Bioengineering, Information and Communication BuildingHanyang UniversitySeoulKorea

Personalised recommendations