Macromolecular Research

, Volume 16, Issue 3, pp 212–217 | Cite as

A study of electrospun PVDF on PET sheet

  • Noppavan Chanunpanich
  • Byungsoo Lee
  • Hongsik Byun


PVDF (Kynar® 761) nanofibers were made by electrospinning with an external voltage of 6–10 kV, a traveling distance of 7–15 cm and a flow rate of 0.4–1 mL/h. Although the mean diameter of the fibers has not changed significantly, the conditions affected the change in diameter distribution. This was attributed to interactions, both attraction and repulsion, between the positive charges on the polymer solutions and the electrically grounded collector. Higher voltages and traveling distance increased the level of attraction between the positive charge on the polymer solution and the electrically grounded collector, resulting in a narrow diameter distribution. In addition, a high flow rate allowed a high population of uniformly charged solutions to travel to the grounded collector, which resulted in a narrow diameter distribution. The optimum conditions for electrospinning of PVDF in DMAc/acetone (3/7 by wt) were a collector voltage of 6 kV, a syringe tip to collector of 7 cm, a flux rate of 0.4 mL/h and 10 kV, 10 cm, 1 mL/h. Since PVDF is widely used as a filtration membrane, it was electrospun on a PET support with a rotating drum as a grounded collector. Surprisingly, some straight nanofibers were separated from the randomly deposited nanofibers. The straight nanofiber area was transparent, while the randomly deposited nanofiber area was opaque. Both straight nanofibers and aligned nanofibers could be obtained by manipulating the PET drum collector. These phenomena were not observed when the support was changed to an Al sheet. This suggests that a pseudo dual collector was generated on the PET sheet. No negative charge was created because the PET sheet was not a conductive material. However, less charge was created when the sheet was not perfectly attached to the metal drum. Hence, the nanofibers jumped from one grounded site to the nearest one, yielding a straight nanofiber.


PVDF electrospinning alignment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt,Macromolecules,7, 573 (2004).CrossRefGoogle Scholar
  2. (2).
    D. Li, Y. Wang, and Y. Xia,Nano Letters,3, 1167 (2003).CrossRefGoogle Scholar
  3. (3).
    S. J. Kim, S. G. Yoon, Y. M. Lee, H. C. Kim, and S. I. Kim,Biosens. Bioelectron.,19, 531 (2004).CrossRefGoogle Scholar
  4. (4).
    G. K. S. Prakash, M. C. Smart, Q.-J. Wang, A. Atti, V. Pleynet, B. Yang, K. McGrath, G. A. Olah, S. R. Narayanan, W. Chun, T. Valdez, and S. Surampudi,J. Fluo. Chem.,125, 1217 (2004).CrossRefGoogle Scholar
  5. (5).
    N. Chanunpanich, H. Byun, and I.-K. Kang,J. Membrane,15, 85 (2005).Google Scholar
  6. (6).
    K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee,Polymer,44, 4029 (2003).CrossRefGoogle Scholar
  7. (7).
    H. Fong, I. Chun, and D. H. Reneker,Polymer,40, 4585 (1999).CrossRefGoogle Scholar
  8. (8).
    S. P. Deshmukh and K. Li,J. Membrane Sci.,150, 75 (1998).CrossRefGoogle Scholar
  9. (9).
    M. Momtaz, J.-L. Dewez, and J. M. Brynaert,J. Membrane Sci.,250, 29 (2005).CrossRefGoogle Scholar
  10. (10).
    S. D. Flint and R. C. T. Slade,Solid State Ionics,97, 299 (1997).CrossRefGoogle Scholar
  11. (11).
    D. I. Ostrovskii, L. M. Torell, M. Paronen, S. Hietala, and F. Sundholm,Solid State Ionics,97, 315 (1997).CrossRefGoogle Scholar
  12. (12).
    M. M. E. Jacob, S. R. S. Prabaharan, and S. Radhakrishna,Solid State Ionics,104, 267 (1997).CrossRefGoogle Scholar
  13. (13).
    P. Schielen, W. Rodijnen, J. Tekstra, R. Albers, and W. Seinen,J. Immun. Methods,188, 33 (1995).CrossRefGoogle Scholar
  14. (14).
    L. Ying, E. T. Kang, K. G. Neoh, K. Kato, and H. Iwata,J. Membrane Sci.,243, 253 (2004).CrossRefGoogle Scholar
  15. (15).
    J. F. Tarlton and P. J. Knight,J. Immun. Methods,191, 65 (1996).CrossRefGoogle Scholar
  16. (16).
    H.-F. Lua, W. S. Lima, J. Wanga, Z-Q. Tanga, P-C. Zhanga, K. W. Leonga, S. M. Chiac, H. Yuc, and H.-Q. Mao,Biomaterials,24, 4893 (2003).CrossRefGoogle Scholar
  17. (17).
    E. R. Cornelissen, Th. van den Boomgaard, and H. Strathmann,Colloid Surface A,138, 283 (1998).CrossRefGoogle Scholar
  18. (18).
    G. Zhai, E. T. Kang, and K. G. Neoh,J. Membrane Sci.,217, 243 (2003).CrossRefGoogle Scholar
  19. (19).
    L. Ying, E. T. Kang, and K. G. Neoh,J. Membrane Sci.,224, 93 (2003).CrossRefGoogle Scholar
  20. (20).
    R. Mazzei, E. Smolko, D. Tadey, and L. Gizzi,Nucl. Instrum. Meth. B,170, 419 (2000).CrossRefGoogle Scholar
  21. (21).
    N. Tzanetakis, J. Varcoe, R. S. Slade, and K. Scott,Electro. Commun.,5, 115 (2003).CrossRefGoogle Scholar
  22. (22).
    N. Tzanetakis, W. M. Taama, K. Scott, J. Varcoe, and R. S. Slade,Desalination,15l, 275 (2002).Google Scholar
  23. (23).
    M. Carano, N. Lion, J.-P. Abid, and H. H. Girault,Electro. Commun.,6, 1217 (2004).CrossRefGoogle Scholar
  24. (24).
    L. Ying, G. Zhai, A. Y. Winata, E. T. Kang, and K. G. Neoh,J. Colloid Interf. Sci.,265, 396 (2003).CrossRefGoogle Scholar
  25. (25).
    P. Gupta and G. L. Wilkes,Polymer,44, 6353 (2003).CrossRefGoogle Scholar
  26. (26).
    K. J. Pawlowski, H. L. Belvin, D. L. Raney, J. Su, J. S. Harrison, and E. J. Siochi,Polymer,44, 1309 (2003).CrossRefGoogle Scholar
  27. (27).
    S.-S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K.-S. Han,Electrochim. Acta,50, 339 (2004).CrossRefGoogle Scholar
  28. (28).
    J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim,Electrochim. Acta,50, 69 (2004).CrossRefGoogle Scholar
  29. (29).
    S.-H. Tan, R. Inai, M. Kotaki, and S. Ramakrishn,Polymer,46, 6128 (2005).CrossRefGoogle Scholar
  30. (30).
    N. Chanunpanich and H. Byun,J. Appl. Polym. Sci.,106, 3648 (2007).CrossRefGoogle Scholar
  31. (31).
    W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park,Polymer,45, 2959 (2004).CrossRefGoogle Scholar
  32. (32).
    K. Morota, H. Matsumoto, T. Mizukoshi, Y. Konosu, M. Minagawa, A. Tanioka, Y. Yamagata, and K. Inoue,J. Colloid Interf. Sci.,279, 484 (2004).CrossRefGoogle Scholar
  33. (33).
    Y. Chen and C.-Y. Shew,Chem. Phys. Lett.,378, 142 (2003).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2008

Authors and Affiliations

  • Noppavan Chanunpanich
    • 1
  • Byungsoo Lee
    • 2
  • Hongsik Byun
    • 3
  1. 1.Department of Industrial Chemistry, Faculty of Applied ScienceKing Mongkut’s Institute of Technology North BangkokBangkokThailand
  2. 2.Department of Automotive EngineeringKeimyung UniversityDaeguKorea
  3. 3.Department of Chemical System EngineeringKeimyung UniversityDaeguKorea

Personalised recommendations