Advertisement

Macromolecular Research

, Volume 15, Issue 4, pp 337–342 | Cite as

An efficient method for synthesis of PEO-based macromonomer and macroinitiator

  • Jungahn Kim
  • Song-yee Choi
  • Kyung Min Kim
  • Da Hyeon Go
  • Hee Jeong Jeon
  • Jae Yeol Lee
  • Hyeong Soo Park
  • Cheol Han Lee
  • Heung Mok Park
Article

Abstract

Then-butyllithium-initiated ring-opening polymerization of ethylene oxide, in a mixture of benzene and dimethylsulfoxide (DMSO), between 25-45°C, with potassiumtert-butoxide, is a useful and powerful method to control the molecular weight as well as achieve a quantitative chain-end functionalization yield of the resulting polymeric alkoxidevia a one pot synthesis. The molecular weight of the product could be controlled by adjusting the ratio of grams of monomer to moles of initiators, such asn-butyllithium ([n-BuLi]) and potassiumt-butoxide ([t-BuOK]). The yields for the macromonomer and?-brominated poly(ethylene oxide) (PEO) were quantitative in relation to the chain-end functionalizations of the polymeric alkoxide formed. The resulting products were characterized by a combination of1H-NMR spectroscopic and size exclusion chromatographic analyses.

Keywords

poly(ethylene oxide) molecular weight control chain-end functionalizations macromonomer macroinitiator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Advances in lithium-ion batteries, B. Scrosati and W. Schalkwijk, Eds., Plenum, New York, 2002.Google Scholar
  2. (2).
    J.-M. Tarascon and M. Armand,Nature,414, 359 (2001).CrossRefGoogle Scholar
  3. (3).
    F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, and R. Caminiti,J. Phys. Chem. B,103, 10632 (1999).CrossRefGoogle Scholar
  4. (4).
    D. Swierczynski, A. Zalewska, and W. Wieczorek,Chem. Mater.,13, 1560 (2001).CrossRefGoogle Scholar
  5. (5).
    H.-M. Xiong, D.-P. Liu, H. Zhang, and J.-S. Chen,J. Mater. Chem.,14, 2775 (2004).CrossRefGoogle Scholar
  6. (6).
    J. M. Harris and R. B. Chess,Nature Rev. Drug Disc.,2, 214 (2003).CrossRefGoogle Scholar
  7. (7).
    R. Duncan,Nature Rev. Drug Disc.,2, 347 (2003).CrossRefGoogle Scholar
  8. (8).
    M. Sharpe, S. E. Easthope, G. M. Keating, and H. M. Lamb,Drugs,62, 2089 (2002).CrossRefGoogle Scholar
  9. (9).
    R. Satchi-Tainaro, R. Duncan, and C. M. Barnes,Adv. Polym. Sci.,193, 1 (2006).CrossRefGoogle Scholar
  10. (10).
    J.-F. Lutz and A. Hoth,Macromolecules,39, 893 (2006). (a) T.-L. Cheng, C.-M. Cheng, B.-M. Chen, S.-A. Tsao, K.-H. Chuang, S.-W. Hsiao, Y.-H. Lin, and S. R. Roffler,Biconjugate Chem.,16, 1225 (2005); (b) W. S. Shim, J. S. Lee, and D. S. Lee,Macromol. Res.,13, 344 (2005).CrossRefGoogle Scholar
  11. (12).
    R. P. Quirk,Anionic synthesis of polymers with functional groups, inComprehensive Polymer Science, S. L. Aggarwal and S. Russo, Eds., Pregamon Press, Seoul, 1992, Suppl.Google Scholar
  12. (13).
    R. P. Quirk and J. Kim,Macromonmers and Macroinitiators, inRing-opening Polymerization; Mechanisms, Catalysis, Structure, Utility, D. J. Brunelle, Ed., Hanser, New York, 1993, Chap. 9, pp 263–293.Google Scholar
  13. (14).
    S. Slomkowski and A. Duda,Anionic Ring-Opening Polymerization, inRing-opening Polymerization; Mechanisms, Catalysis, Structure, Utility, D. J. Brunelle, Ed., Hanser, New York, 1993, Chap. 3, pp 87–128.Google Scholar
  14. (15).
    H. L. Hsieh and R. P. Quirk,Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York, 1996, Chap. 24, pp 685–710.Google Scholar
  15. (16) (a).
    D. H. Richards and M. Szwarc,Trans. Faraday Soc.,55, 1644 (1959);CrossRefGoogle Scholar
  16. (16) (b).
    L. E. St. Pierre and C. C. Price,J. Am. Chem. Soc.,78, 3432 (1956).CrossRefGoogle Scholar
  17. (17).
    B. Esswein and M. Moller,Angew. Chem. Int. Ed. Engl.,35, 623 (1996).CrossRefGoogle Scholar
  18. (18).
    R. P. Quirk, J. Kim, C. Kausch, and M. Chun,Polym. Int.,39, 3 (1996).CrossRefGoogle Scholar
  19. (19).
    R. P. Quirk, J. Kim, K. Rodrigues, and W. L. Mattice,Makromol. Chem., Macromol. Symp.,42/43, 463 (1991).CrossRefGoogle Scholar
  20. (20).
    M. Morton and L. J. Fetters,Rubber Chem. Technol.,48, 359 (1975).CrossRefGoogle Scholar
  21. (21).
    J. M. Stouffer and T. J. McCarthy,Macromolecules,21, 1204 (1988).CrossRefGoogle Scholar
  22. (22).
    H. Gilman and F. K. Cartledge,J. Organomet. Chem.,2, 447 (1964).CrossRefGoogle Scholar
  23. (23).
    A. Napoli, N. Tirelli, G. Kilcher, and J. A. Hubbell,Macromolecules,34, 8913 (2001).CrossRefGoogle Scholar
  24. (24).
    R. P. Quirk and J. J. Ma,J. Polym. Sci.; Part A: Polym. Chem.,24, 2031 (1988).CrossRefGoogle Scholar
  25. (25).
    V. Halaska, L. Lochmann, and D. Lim,Collect. Czec. Chem. Commun.,33, 3245 (1968).Google Scholar
  26. (26).
    J. E. Figueruelo and D. J. Worsfold,Eur. Polym. J.,4, 439 (1968).CrossRefGoogle Scholar
  27. (27).
    M. Schlosser,J. Organomet. Chem.,8, 9 (1967).CrossRefGoogle Scholar
  28. (28).
    L. Brandsma and H. Verkruijsse,Preparative Polar Organometallic Chemistry 1, Springer-Verlag, Berlin Heidelberg, 1987, Chap. II, p 41.Google Scholar
  29. (29).
    C. E. H. Bawn, A. Ledwith, and N. McFarlane,Polymer,10, 653 (1969).CrossRefGoogle Scholar
  30. (30).
    C. C. Price and D. D. Carmelite,J. Am. Chem. Soc.,88, 4039 (1966).CrossRefGoogle Scholar
  31. (31).
    H. L. Hsieh and R. P. Quirk,Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York, 1996, Chap. 4, pp 71–92.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2007

Authors and Affiliations

  • Jungahn Kim
    • 1
    • 2
  • Song-yee Choi
    • 1
    • 2
  • Kyung Min Kim
    • 1
    • 2
  • Da Hyeon Go
    • 1
    • 2
  • Hee Jeong Jeon
    • 1
    • 2
  • Jae Yeol Lee
    • 1
    • 2
  • Hyeong Soo Park
    • 3
  • Cheol Han Lee
    • 3
  • Heung Mok Park
    • 3
  1. 1.Research Institute of Basic SciencesKyung Hee UniversitySeoulKorea
  2. 2.Department of ChemistryKyung Hee UniversitySeoulKorea
  3. 3.Department of Chemical EngineeringSogang UniversitySeoulKorea

Personalised recommendations