Advertisement

Macromolecular Research

, Volume 15, Issue 2, pp 154–159 | Cite as

Fabrication of polyaniline nanoparticles using microemulsion polymerization

  • Jyongsik Jang
  • Jungseok Ha
  • Sunhee Kim
Article

Abstract

Polyaniline (PANI) nanospheres, 4 nm in diameter, were fabricated by the microemulsion polymerization of octyltrimethyl ammonium bromide (OTAB). The size of the PANI nanoparticles could be controlled as functions of the surfactant concentration, surfactant spacer length and polymerization temperature. The diameter of the PANI nanospheres decreased with increasing surfactant concentration and decreasing temperature. The PANI nanoparticles revealed enhanced conductivity compared to conventional bulk PANIs. In addition, the PANI nanoparticles could be applied as optically transparent conducting materials due to their high conductivity and the nanosize effect. With 9 wt% PANI in the PC matrix, the PANI/PC film exhibited a conductivity of 8.9 × 10−3 S/cm and transparency exceeding 95% over the entire visible light range.

Keywords

conducting polymers nanoparticles microemulsion polymerization polyaniline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. Jang,Adv. Polym. Sci.,199, 189 (2006).CrossRefGoogle Scholar
  2. (2).
    J. Keum, C. S. Ha, and Y. Kim,Macromol. Res.,14, 401 (2006).CrossRefGoogle Scholar
  3. (3).
    Q. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger,Science,269, 1086 (1995).CrossRefGoogle Scholar
  4. (4).
    U. Asawapirom, F. Bulut, T. Farrell, C. Gadermaier, S. Gamerith, R. Guntner, T. Kietzke, S. Patil, T. Piok, R. Montenegro, B. Stiller, B. Tiersch, K. Landfester, E. J. W. List, D. Neher, C. S. Torres, and U. Scherf,Macromol. Symp.,212, 83 (2004).CrossRefGoogle Scholar
  5. (5).
    D. Chaudhuri, A. Kumar, I. Rudra, and D. D. Sarma,Adv. Mater.,13, 1548 (2001).CrossRefGoogle Scholar
  6. (6).
    X. Zhang, W. J. Goux, and S. K. Manohar,J. Am. Chem. Soc.,126, 4502 (2004).CrossRefGoogle Scholar
  7. (7).
    J. Y. Kwon, E. Y. Kim, and H. D. Kim,Macromol. Res.,12, 303 (2004).CrossRefGoogle Scholar
  8. (8).
    P. Manisankar, C. Vedhi, and G. Selvanathan,J. Polym. Sci. A,43, 1702 (2005).CrossRefGoogle Scholar
  9. (9).
    H. Qiu and M. Wan,J. Polym. Sci. A,39, 3485 (2001).CrossRefGoogle Scholar
  10. (10).
    H. Xia and Q. Wang,J. Appl. Polym. Sci.,87, 1811 (2003).CrossRefGoogle Scholar
  11. (11).
    D. Chattopadhyay, M. Chakraborty and B. M. Mandal,Polym. Int.,50, 538 (2001).CrossRefGoogle Scholar
  12. (12).
    M. Wan and J. Li,J. Polym. Sci. A,37, 4605 (1999).CrossRefGoogle Scholar
  13. (13).
    J. Stejskal, P. Kratochvil and M. Helmstedt,Langmuir,12, 3389 (1996).CrossRefGoogle Scholar
  14. (14).
    P. S. Rao, S. Subrahmanya, and D. N. Sathyanarayana,Synth. Met.,9201, 1 (2002).Google Scholar
  15. (15).
    J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner,J. Am. Chem. Soc.,125, 314 (2003).CrossRefGoogle Scholar
  16. (16).
    Z. Zhang, Z. Wei, and M. Wan,Macromolecules,35, 5937 (2002).CrossRefGoogle Scholar
  17. (17).
    G. M. Do Nascimento, P. Corio, R. W. Novickis, M. L. A. Temperini, and M. S. Dresselhaus,J. Polym. Sci. A,43, 815 (2005).CrossRefGoogle Scholar
  18. (18).
    M. V. Kulkarni, A. K. Viswanath, R. Marimuthu, and T. Seth,J. Polym. Sci. A,42, 2043 (2004).CrossRefGoogle Scholar
  19. (19).
    M. Wan and J. Li,J. Polm. Sci. A,38, 2359 (2000).CrossRefGoogle Scholar
  20. (20).
    S. H. Lee, J. W. Yoon, and M. H. Suh,Macromol. Res.,10, 282 (2002)CrossRefGoogle Scholar
  21. (21).
    J. Li, K. Fang, H. Qiu, S. Li, W. Mao, and Q. Wu,Synth. Met.,145, 191 (2004).CrossRefGoogle Scholar
  22. (22).
    J. Jang, J. H. Oh, and G. D. Stucky,Angew. Chem. Int. Ed.,41, 4016 (2002).CrossRefGoogle Scholar
  23. (23).
    J. Jang and K. Lee,Chem. Commun., 1098 (2002).Google Scholar
  24. (24).
    F. Yan and G. Xue,J. Mater. Chem.,9, 3035 (1999).CrossRefGoogle Scholar
  25. (25).
    X. J. Xu, L. M. Gan, K. S. Siow, and M. K. Wong,J. Appl. Polym. Sci.,91, 1360 (2004).CrossRefGoogle Scholar
  26. (26).
    J. Jang and J. H. Oh,Adv. Mater.,16, 1650 (2004).CrossRefGoogle Scholar
  27. (27).
    J. Jang and J. H. Oh,Adv.Funct. Mater.,15, 494 (2005).CrossRefGoogle Scholar
  28. (28).
    S. Zhou, F. Yeh, C. Burger, and B. Chu,J. Phys. Chem. B,103, 2107 (1999).CrossRefGoogle Scholar
  29. (29).
    H. J. Reiss,Colloid Interface Sci.,53, 61 (1975).CrossRefGoogle Scholar
  30. (30).
    J. Stejskal, A. Riede, D. Hlavata, J. Prokes, M. Helmstedt, and P. Holler,Synth. Met.,96, 55 (1998).CrossRefGoogle Scholar
  31. (31).
    G. Boara and M. Sparpaglione,Synth. Met.,72, 135 (1995).CrossRefGoogle Scholar
  32. (32).
    N. Kuramoto and A. Tomita,Polymer,38, 3055 (1997).CrossRefGoogle Scholar
  33. (33).
    J. Lei, Z. Cai, and C. R. Martin,Synth. Met.,46, 53 (1992).CrossRefGoogle Scholar
  34. (34).
    J. Duchet, R. Legras, and S. Demoustier-Champagne,Synth. Met.,98, 113 (1998).CrossRefGoogle Scholar
  35. (35).
    W. Luzny and E. Banka,Macromoleculars,33, 425 (2000).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2007

Authors and Affiliations

  1. 1.Hyperstructured Organic Materials Research CenterSchool of Chemical and Biological EngineeringSeoulSeoul National UniversityKorea

Personalised recommendations