Macromolecular Research

, Volume 15, Issue 1, pp 51–58 | Cite as

Fabrication of pre-exfoliated clay masterbatch via exfoliation-adsorption of polystyrene nanobeads

  • Svetlana Khvan
  • Junkyung Kim
  • Sang-Soo Lee


The approach studied in the present work produced an exfoliated state of clay layers via confinement of the charged nano-sized polystyrene (PS) beads within the gallery of swollen pristine clay. It was demonstrated that adsorption of the polymer nanobeads dramatically promotes expansion of the clay gallery. A comparative study of incorporation was conducted by employing organo-modified clay along with two different colloid polymer systems: electrostatically stabilized PS nanobeads and cationic monomer-grafted PS nanobeads. The mechanism of adsorption of the monomer-grafted polymer beads onto clay via cationic exchange between the alkyl ammonium group of the polymer nanobeads and the interlayer sodium cation of the layered silicate was verified by using several techniques. As distinct from the polymer nanobeads formed using conventional miniemulsion polymerization method, competitive adsorption of stabilizing surfactant molecules was be prevented by grafting the surface functional groups into the polymer chain, thereby supporting the observed effective adsorption of the polymer beads. The presence of surface functional groups that support the establishment of strong polymer-clay interactions was suggested to improve the compatibility of the clay with the polymer matrix and eventually play a crucial role in the performance of the final nanocomposites.


charged polymer nanobeads incorporation cation exchange surface functional groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. Y. Lochhead, C. M. Boykin, and C. McConnell, inPolymer Nanocomposites, R. A. Vaia and R. Krishnamoorti, Eds., Oxford University Press, Cary, NC, 2002, p. 43.Google Scholar
  2. (2).
    M. Alexandre and P. Dubois,Mater. Sci. Eng. R: Reports,28, 1 (2000).CrossRefGoogle Scholar
  3. (3).
    Z. Wang, J. Massam, and T. J. Pinnavaia, inPolymer-Clay Nanocomposites, T. J. Pinnavaia and G. W. Beall, Eds., John Wiley & Sons, Chichester, 2000, p. 127.Google Scholar
  4. (4).
    G. Lagaly and T. J. Pinnavaia,Appl. Clay Sci.,15, 1 (1999).CrossRefGoogle Scholar
  5. (5).
    R. A. Vaia, inPolymer-Clay Nanocomposites, T. J. Pinnavaia, and G. W. Beall, Eds., John Wiley & Sons, Chichester, 2000, p. 229.Google Scholar
  6. (6).
    C. I. Park, O. O. Park, J. G. Lim, and H. J. Kim,Polymer,42, 7465 (2001).CrossRefGoogle Scholar
  7. (7).
    R. A. Vaia and E. P. Giannelis,Macromolecules,30, 8000 (1997).CrossRefGoogle Scholar
  8. (8).
    R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis,Chem. Mater.,8, 2628 (1996).CrossRefGoogle Scholar
  9. (9).
    P. C. LeBaron, Z. Wang, and T. J. Pinnavaia,Appl. Clay Sci.,15, 11 (1999).CrossRefGoogle Scholar
  10. (10).
    Y. Li and H. Ishida,Polymer,44, 6571 (2003).CrossRefGoogle Scholar
  11. (11).
    N. Ogata, S. Kawakage, and T. Ogihara,J. Appl. Polym. Sci.,66, 573 (1997).CrossRefGoogle Scholar
  12. (12).
    J. Billingham, C. Breen, and J. Yarwood,Vib. Spectrosc.,14, 19 (1997).CrossRefGoogle Scholar
  13. (13).
    R. L. Parfitt and D. J. Greenland,Clay Miner.,8, 305 (1970).CrossRefGoogle Scholar
  14. (14).
    E. A. Ruiz-Hitzky, Casal Pilar, Galvan Blanca, and C. Juan,Adv. Mater.,7, 180 (1995).CrossRefGoogle Scholar
  15. (15).
    X. Zhao, K. Urano, and S. Ogasawara,Colloid Polym. Sci.,267, 899 (1989).CrossRefGoogle Scholar
  16. (16).
    M. Kato and A. Uzuki, inPolymer Clay Nanocomposites, R. A. Vaia and R. Krishnamoorti, Eds., John Wiley & Sons, Chichester, 2000, p. 97.Google Scholar
  17. (17).
    X. Fu and S. Qutubuddin,Mater. Lett.,42, 12 (2000).CrossRefGoogle Scholar
  18. (18).
    S. S. Hou and K. Schmidt-Rohr,Chem. Mater.,15, 1938 (2003).CrossRefGoogle Scholar
  19. (19).
    H. M. Jeong and Y. T. Ahn,Macromol. Res.,13, 102 (2005).CrossRefGoogle Scholar
  20. (20).
    H. M. Jeong, M. Y. Choi, and Y. T. Ahn,Macromol. Res.,14, 312 (2006).CrossRefGoogle Scholar
  21. (21).
    X. Huang and W. J. Brittain,Macromolecules,34, 3255 (2001).CrossRefGoogle Scholar
  22. (22).
    G. B. Rossi, G. Beaucage, T. D. Dang, and R. A. Vaia,Nano Lett.,2, 319 (2002).CrossRefGoogle Scholar
  23. (23).
    R. G. Gilbert,Emulsion Polymerization. A Mechanistic Approach, Academic Press, London, 1995.Google Scholar
  24. (24).
    Z. Liu, H. Xiao, N. Wiseman, and A. Zheng,Colloid Polym. Sci.,281, 815 (2003).CrossRefGoogle Scholar
  25. (25).
    H. van Olphen,An Introduction to Clay Colloid Chemistry, Interscience Publications, New York, 1963.Google Scholar
  26. (26).
    R. M. Fitch,Polymer Colloids: A Comprehensive Introduction, Academic Press San Diego, 1997.Google Scholar
  27. (27).
    S. S. Madaeni and M. Ghanbarian,Polym. Int.,49, 1356 (2000).CrossRefGoogle Scholar
  28. (28).
    G. Beamson and D. Briggs,High Resolution Xps of Organic Polymers: The Scienta Esca300 Database, Wiley & Sons Ltd., Chichester, 1992.Google Scholar
  29. (29).
    J. M. Adams, S. Evans, P. I. Reld, J. M. Thomas, and M. J. Walters,Anal. Chem.,49, 2001 (1977).CrossRefGoogle Scholar
  30. (30).
    N. C. Dutta, T. Iwasaki, T. Ebina, and H. Hayashi,J. Colloid Interf. Sci.,216, 161 (1999).CrossRefGoogle Scholar
  31. (31).
    H. van Olphen,Clay Colloid Chemistry for Clay Technologists, Geologists, and Soil Scientists, John Wiley & Sons, New York, 1963.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2007

Authors and Affiliations

  1. 1.Polymer Hybrid CenterKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations