Macromolecular Research

, Volume 14, Issue 6, pp 617–623 | Cite as

Surface and dielectric properties of oriental lacquer films modified by UV-curable silicone acrylate



In order to achieve an oriental lacquer (OL) film with a thick consistency, UV-curable silicone acrylate (SA) was added to OL by a dual curing process. The addition of 5 wt% UV-curable SA to the OL formulation enabled the preparation via a single drying step of a 77 μm-thick film exhibiting excellent surface properties. FTIRATR was used to investigate the effect of UV-curable SA on the behavior of film formation during curing, and the relaxation behavior of the produced films was investigated by dielectric spectroscopy. Dielectric properties were measured in the frequency range 10−2–105 Hz at various temperatures between −100 and 200 °C. The results demonstrated that OL modified by UV-curable SA has a higher glass transition temperature and stronger secondary relaxation at a lower temperature than the conventional OL system. The OL film modified with UV-curable SA was presumed to be harder at the surface and tougher than conventional OL film.


oriental lacquer silicone acrylate dielectric properties surface properties UV-curable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D. M. Snyder,J. Chem. Edu.,66, 977 (1989).CrossRefGoogle Scholar
  2. (2).
    T. Nakamura,Biochem. Biophysics Res. Commun.,2, 111 (1960).CrossRefGoogle Scholar
  3. (3).
    M. Takada, R. Oshima, Y. Yamauchi, J. Kumanotani, and M. Seno,J. Org. Chem.,53, 3072 (1988).CrossRefGoogle Scholar
  4. (4).
    W. H. Daly and S. Moulay,J. Polym. Sci. Polym. Symp.,74, 227 (1986).CrossRefGoogle Scholar
  5. (5).
    J. Kumanotani,J. Macromol. Chem.,179, 47 (1978).CrossRefGoogle Scholar
  6. (6).
    E. Obataya, Y. Furuta, Y. Ohno, M. Norimoto, and B. Tomita,J. Appl. Polym. Sci.,83, 2288 (2002).CrossRefGoogle Scholar
  7. (7).
    R. Oshima, Y. Yamauchi, C. Watanabe, and J. Kumanotani,J. Org. Chem.,50, 613 (1985).CrossRefGoogle Scholar
  8. (8).
    H. W. Starkweather,Macromolecules,14, 1277 (1981).CrossRefGoogle Scholar
  9. (9).
    A. Livi, G.. Levita, and P. A. Rolla,J. Appl. Polm. Sci.,50, 1583 (1993).CrossRefGoogle Scholar
  10. (10).
    G. Hoffmann and S. Poliszko,J. Appl. Polym. Sci.,59, 269 (1996).CrossRefGoogle Scholar
  11. (11).
    B. A. Bedeker, Y. Tsujii, N. Ide, Y. Kita, T. Fukuda, and T. Miyamoto,Polymer,36, 4735 (1995).Google Scholar
  12. (12).
    M. Younes, S. Wartewig, D. Lellinger, B. Strehmel, and V. Strehmel,Polymer,35, 5269 (1994).CrossRefGoogle Scholar
  13. (13).
    J. W. Hong, H. K. Kim, and J. O. Choi,J. Appl. Polym. Sci.,76, 1804 (2000).CrossRefGoogle Scholar
  14. (14).
    G. Katana, E. W. Fischer, Th. Hack, V. Abetz, and F. Kremer,Macromolecules,28, 2714 (1995).CrossRefGoogle Scholar
  15. (15).
    R. H. M. Leur,Polymer,35, 2691 (1994).CrossRefGoogle Scholar
  16. (16).
    I. Alig and G.. P. Johari,J. Polym. Sci. Polym. Phys. B,31, 299 (1993).CrossRefGoogle Scholar
  17. (17).
    M. S. Graff and R. H. Boyd,Polymer,35, 1797 (1994).CrossRefGoogle Scholar
  18. (18).
    G. H. Hsiue, R. H. Lee, R. J. Jeng, and C. S. Chang,J. Polym. Sci. Part B,34, 555 (1996).CrossRefGoogle Scholar
  19. (19).
    J. F. Bristow and D. S. Kalika,Macromolecules,27, 1808 (1994).CrossRefGoogle Scholar
  20. (20).
    R. D. Calleja, I. Devine, L. Gargallo, and D. Radic,Polymer,35, 151 (1994).CrossRefGoogle Scholar
  21. (21).
    J. S. Hwang, J. Lee, and Y. H. Chang,Macromol. Res.,13, 409 (2005).CrossRefGoogle Scholar
  22. (22).
    S. Y. Pyun and W. G. Kim,Macromol. Res.,11, 202 (2003).CrossRefGoogle Scholar
  23. (23).
    T. Das, A. K. Banthia, and B. Adhikari,Macromol. Res.,14, 261 (2006).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2006

Authors and Affiliations

  1. 1.Department of Polymer Science & EngineeringChosun UniversityGwangjuKorea

Personalised recommendations