Macromolecular Research

, Volume 17, Issue 4, pp 240–244 | Cite as

Synthesis of high molecular weight 3-arm star PMMA by ARGET ATRP

  • Hyun Jeong Jeon
  • Ji Ho Youk
  • Sung Hee Ahn
  • Jin Hwan Choi
  • Kwang Soo Cho


High molecular weight (MW), 3-arm star poly(methyl methacrylate) (PMMA) with a narrow MW distribution (M n =570,000 g/mol, PDI=1.36) was successfully synthesized by activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP). The polymerization was carried out with a trifunctional initiator/CuBr2/N,N,N′,N′,N′-pentamethyldiethylenetriamine (PMDETA) initiator/catalyst system in the presence of a tin(II) 2-ethylhexanoate [Sn(EH)2] reducing agent at 90 °C. The concentration of the copper catalyst was as low as 30 ppm, and a high initiation efficiency of the initiating sites was obtained. The chain-end functionality of the high MW, 3-arm star PMMA was confirmed by a chain extension experiment with styrene via ARGET ATRP, using the same catalyst system.


activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) star polymer poly(methyl methacrylate) high molecular weight 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    K. Matyjaszewski and J. Xia,Chem. Rev.,101, 2921 (2001).CrossRefGoogle Scholar
  2. (2).
    Y. Gnanou and G. Hizal,J. Polym. Sci. Part A: Polym. Chem.,42, 351 (2004).CrossRefGoogle Scholar
  3. (3).
    G. Hizal, U. Tunca, S. Aras, and H. Mert,J. Polym. Sci. Part A: Polym. Chem.,44, 77 (2006).CrossRefGoogle Scholar
  4. (4).
    H. Tang, N. Arulsamy, M. Radosz, Y. Shen, N. V. Tsarevsky, W. A. Braunecker, W. Tang, and K. Matyjaszewski,J. Am. Chem. Soc.,128, 16277 (2006).CrossRefGoogle Scholar
  5. (5).
    W. Jakubowski, K. Min, and K. Matyjaszewski,Macromolecules,39, 39 (2006).CrossRefGoogle Scholar
  6. (6).
    H. Dong, W. Tang, and K. Matyjaszewski,Macromolecules,40, 2974 (2006).CrossRefGoogle Scholar
  7. (7).
    J. Pietrasik, H. Dong, and K. Matyjaszewski,Macromolecules,39, 6384 (2006).CrossRefGoogle Scholar
  8. (8).
    W. Jakubowski, B. Kirci-Denizli, R. R. Gil, and K. Matyjaszewski,Macromol. Chem. Phys.,206, 32 (2008).CrossRefGoogle Scholar
  9. (9).
    L. Xue, U. S. Agarwal, and P. J. Lemstra,Macromolecules,35, 8650 (2002).CrossRefGoogle Scholar
  10. (10).
    L. Xue, U. S. Agarwal, M. Zhang, B. B. P. Staal, A. H. E. Muller, C. M. E. Bailly, and P. J. Lemstra,Macromolecules,38, 2093 (2005).CrossRefGoogle Scholar
  11. (11).
    H. J. Jeon, W.-J. Jin, E. H. Jeong, J. H. Hong, S. H. Ahn, J. H. Choi, K. S. Cho, and J. H. Youk,Polymer Preprint,47, 473 (2006).Google Scholar
  12. (12).
    B. W. Mao, L. H. Gan, and Y. Y. Gan,Polymer,47, 3017 (2006).CrossRefGoogle Scholar
  13. (13).
    N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatrou,Chem. Rev.,101, 3747 (2001).CrossRefGoogle Scholar
  14. (14).
    G. Klaerner, M. Petro, D. Charmot, and D. Benoit, US Patent 7,259,217 (2007).Google Scholar
  15. (15).
    X.-Z. Wang, H.-L. Zhang, D.-C. Shi, J.-F. Chen, X.-Y. Wang, and Q.-F. Zhou,Eur. Polym. J.,41, 933 (2005).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  • Hyun Jeong Jeon
    • 1
  • Ji Ho Youk
    • 1
  • Sung Hee Ahn
    • 2
  • Jin Hwan Choi
    • 2
  • Kwang Soo Cho
    • 3
  1. 1.Department of Advanced Fiber Engineering, Division of Nano-SystemsInha UniversityIncheonKorea
  2. 2.Cheil Industries Inc.UiwangKorea
  3. 3.Department of Polymer Science and EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations