Macromolecular Research

, Volume 17, Issue 12, pp 1025–1031 | Cite as

Synthesis and characterization of biodegradable thermo- and pH-sensitive hydrogels based on pluronic F127/poly(ε-caprolactone) macromer and acrylic acid

  • Sanping Zhao
  • Mengjie Cao
  • Jun Wu
  • Weilin Xu


Several kinds of biodegradable hydrogels were prepared viain situ photopolymerization of Pluronic F127/poly(ε-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased.In vitro hydrolytic degradation in the buffer solution (pH 7.4, 37 °C), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. Thein vitro release profiles of bovine serum albumin (BSA)in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.


photopolymerization temperature sensitivity pH sensitivity hydrolytic degradation drug delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. Shinji, O. Masayuki, and I. Isao,Macromolecules,40, 3394 (2007).CrossRefGoogle Scholar
  2. (2).
    D. T. Pual, R. H. Jonathan, J. C. Colin, P. A. Steven, A. L. J. Richard, and J. R. Anthony,Macromolecules,40, 4393 (2007).CrossRefGoogle Scholar
  3. (3).
    T. Tanaka, I. Nishio, S. T. Sun, and S. Ueno-Nishio,Science,218, 467 (1982).CrossRefGoogle Scholar
  4. (4).
    S. P. Jin, M. Z. Liu, F. Zhang, S. L. Chen, and A. Z. Niu,Polymer,47, 1526 (2006).CrossRefGoogle Scholar
  5. (5).
    M. Akira, Y. Ryo, and K. Kazunori,Biomacromolecules,5, 1038 (2004).CrossRefGoogle Scholar
  6. (6).
    Y. H. Bae, T. Okano, R. Hsu, and S. W. Kim,Macromol. Chem. Rapid Commun.,8, 481 (1987).CrossRefGoogle Scholar
  7. (7).
    K. S. Soppimath, L. H. Liu, W. Y. Seow, S. Q. Liu, R. Powell, P. Chan, and Y. Y. Yang,Adv. Funct. Mater.,17, 355 (2007).CrossRefGoogle Scholar
  8. (8).
    W. S. Shim, J. S. Yoo, Y. H. Bae, and D. S. Lee,Biomacromolecules,6, 2930 (2005).CrossRefGoogle Scholar
  9. (9).
    J. M. Suh, S. J. Bae, and B. Jeong,Adv. Mater.,17, 118 (2005).CrossRefGoogle Scholar
  10. (10).
    M. R. Guilherme, R. Silva, E. M. Girotto, A. F. Rubira, and E. C. Muniz,Polymer,44, 4213 (2003).CrossRefGoogle Scholar
  11. (11).
    L. D. Taylor and L. D. Cerankowski,J. Polym. Sci. Part A: Polym. Chem.,13, 2551 (1975).Google Scholar
  12. 12).
    H. Chen and Y. L. Hsieh,J. Polym. Sci. Part A: Polym. Chem.,42, 6331 (2004).CrossRefGoogle Scholar
  13. (13).
    X. Z. Zhang, Y. Y. Yang, F. J. Wang, and T. S. Chung,Langmuir,18, 2013 (2002).CrossRefGoogle Scholar
  14. (14).
    R. Silva and M. G. Oliveira,Polymer,48, 4114 (2007).CrossRefGoogle Scholar
  15. (15).
    H. Tanii and K. Hashimoto,Archives of Toxicology,54, 203 (1983).CrossRefGoogle Scholar
  16. (16).
    Y. Qiu and K. Park,Adv. Drug Deliv. Rev.,53, 321 (2001).CrossRefGoogle Scholar
  17. (17).
    J. T. Zhang, S. W. Huang, S. X. Cheng, and R. X. Zhuo,J. Polym. Sci. Part A: Polym. Chem.,42, 1249 (2004).CrossRefGoogle Scholar
  18. (18).
    X. J. Loh, S. H. Goh, and J. Li,Biomacromolecules,8, 585 (2007).CrossRefGoogle Scholar
  19. (19).
    X. J. Loh, S. H. Goh, and J. Li,Biomaterials,28, 4113 (2007).CrossRefGoogle Scholar
  20. (20).
    J. C. Ha, S. Y. Kim, and Y. M. Lee,J. Control. Rel.,62, 381 (1999).CrossRefGoogle Scholar
  21. (21).
    P. Chandaroy, A. Sen, and S. W. Hui,J. Control. Rel.,76, 27 (2001).CrossRefGoogle Scholar
  22. (22).
    J. H. Ha, S. H. Kim, S. Y. Han, Y. K. Sung, Y. M. Lee, I. K. Kang, and C. S. Cho,J. Control. Rel.,49, 253 (1997).CrossRefGoogle Scholar
  23. (23).
    S. C. Woodward, P. S. Brewer, F. Moatamed, A. Schindler, and C. G. Pitt,J. Biomed. Mater. Res.,19, 437 (1985).CrossRefGoogle Scholar
  24. (24).
    S. P. Zhao, L. M. Zhang, D. Ma, C. Yang, and L. Yan,J. Phys. Chem. B,110, 16503 (2006).CrossRefGoogle Scholar
  25. (25).
    S. S. Kim, Y. M. Lee, and C. S. Cho,Polymer,36, 4497 (1995).CrossRefGoogle Scholar
  26. (26).
    E. Kokufuta, B. Wang, R. Yoshida, A. R. Khokhlov, and M. Hirata,Macromolecules,31, 6878 (1998).CrossRefGoogle Scholar
  27. (27).
    G. H. Chen and A. S. Hoffman,Nature,373, 49 (1995).CrossRefGoogle Scholar
  28. (28).
    S. Beltran, J. P. Bakai, H. H. Hooper, H. W. Blanch, and M. Prausnitz,Macromolecules,24, 549 (1991).CrossRefGoogle Scholar
  29. (29).
    P. L. Rigter and N. A. Peppas,J. Control. Rel.,5, 37 (1987).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  1. 1.Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of EducationWuhan University of Science and EngineeringWuhanP.R. China

Personalised recommendations