Skip to main content
Log in

Synthesis and characterization of biodegradable thermo- and pH-sensitive hydrogels based on pluronic F127/poly(ε-caprolactone) macromer and acrylic acid

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Several kinds of biodegradable hydrogels were prepared viain situ photopolymerization of Pluronic F127/poly(ε-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased.In vitro hydrolytic degradation in the buffer solution (pH 7.4, 37 °C), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. Thein vitro release profiles of bovine serum albumin (BSA)in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shinji, O. Masayuki, and I. Isao,Macromolecules,40, 3394 (2007).

    Article  Google Scholar 

  2. D. T. Pual, R. H. Jonathan, J. C. Colin, P. A. Steven, A. L. J. Richard, and J. R. Anthony,Macromolecules,40, 4393 (2007).

    Article  Google Scholar 

  3. T. Tanaka, I. Nishio, S. T. Sun, and S. Ueno-Nishio,Science,218, 467 (1982).

    Article  CAS  Google Scholar 

  4. S. P. Jin, M. Z. Liu, F. Zhang, S. L. Chen, and A. Z. Niu,Polymer,47, 1526 (2006).

    Article  CAS  Google Scholar 

  5. M. Akira, Y. Ryo, and K. Kazunori,Biomacromolecules,5, 1038 (2004).

    Article  Google Scholar 

  6. Y. H. Bae, T. Okano, R. Hsu, and S. W. Kim,Macromol. Chem. Rapid Commun.,8, 481 (1987).

    Article  CAS  Google Scholar 

  7. K. S. Soppimath, L. H. Liu, W. Y. Seow, S. Q. Liu, R. Powell, P. Chan, and Y. Y. Yang,Adv. Funct. Mater.,17, 355 (2007).

    Article  CAS  Google Scholar 

  8. W. S. Shim, J. S. Yoo, Y. H. Bae, and D. S. Lee,Biomacromolecules,6, 2930 (2005).

    Article  CAS  Google Scholar 

  9. J. M. Suh, S. J. Bae, and B. Jeong,Adv. Mater.,17, 118 (2005).

    Article  CAS  Google Scholar 

  10. M. R. Guilherme, R. Silva, E. M. Girotto, A. F. Rubira, and E. C. Muniz,Polymer,44, 4213 (2003).

    Article  CAS  Google Scholar 

  11. L. D. Taylor and L. D. Cerankowski,J. Polym. Sci. Part A: Polym. Chem.,13, 2551 (1975).

    CAS  Google Scholar 

  12. H. Chen and Y. L. Hsieh,J. Polym. Sci. Part A: Polym. Chem.,42, 6331 (2004).

    Article  CAS  Google Scholar 

  13. X. Z. Zhang, Y. Y. Yang, F. J. Wang, and T. S. Chung,Langmuir,18, 2013 (2002).

    Article  CAS  Google Scholar 

  14. R. Silva and M. G. Oliveira,Polymer,48, 4114 (2007).

    Article  Google Scholar 

  15. H. Tanii and K. Hashimoto,Archives of Toxicology,54, 203 (1983).

    Article  CAS  Google Scholar 

  16. Y. Qiu and K. Park,Adv. Drug Deliv. Rev.,53, 321 (2001).

    Article  CAS  Google Scholar 

  17. J. T. Zhang, S. W. Huang, S. X. Cheng, and R. X. Zhuo,J. Polym. Sci. Part A: Polym. Chem.,42, 1249 (2004).

    Article  CAS  Google Scholar 

  18. X. J. Loh, S. H. Goh, and J. Li,Biomacromolecules,8, 585 (2007).

    Article  CAS  Google Scholar 

  19. X. J. Loh, S. H. Goh, and J. Li,Biomaterials,28, 4113 (2007).

    Article  CAS  Google Scholar 

  20. J. C. Ha, S. Y. Kim, and Y. M. Lee,J. Control. Rel.,62, 381 (1999).

    Article  CAS  Google Scholar 

  21. P. Chandaroy, A. Sen, and S. W. Hui,J. Control. Rel.,76, 27 (2001).

    Article  CAS  Google Scholar 

  22. J. H. Ha, S. H. Kim, S. Y. Han, Y. K. Sung, Y. M. Lee, I. K. Kang, and C. S. Cho,J. Control. Rel.,49, 253 (1997).

    Article  CAS  Google Scholar 

  23. S. C. Woodward, P. S. Brewer, F. Moatamed, A. Schindler, and C. G. Pitt,J. Biomed. Mater. Res.,19, 437 (1985).

    Article  CAS  Google Scholar 

  24. S. P. Zhao, L. M. Zhang, D. Ma, C. Yang, and L. Yan,J. Phys. Chem. B,110, 16503 (2006).

    Article  CAS  Google Scholar 

  25. S. S. Kim, Y. M. Lee, and C. S. Cho,Polymer,36, 4497 (1995).

    Article  CAS  Google Scholar 

  26. E. Kokufuta, B. Wang, R. Yoshida, A. R. Khokhlov, and M. Hirata,Macromolecules,31, 6878 (1998).

    Article  CAS  Google Scholar 

  27. G. H. Chen and A. S. Hoffman,Nature,373, 49 (1995).

    Article  CAS  Google Scholar 

  28. S. Beltran, J. P. Bakai, H. H. Hooper, H. W. Blanch, and M. Prausnitz,Macromolecules,24, 549 (1991).

    Article  CAS  Google Scholar 

  29. P. L. Rigter and N. A. Peppas,J. Control. Rel.,5, 37 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanping Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Cao, M., Wu, J. et al. Synthesis and characterization of biodegradable thermo- and pH-sensitive hydrogels based on pluronic F127/poly(ε-caprolactone) macromer and acrylic acid. Macromol. Res. 17, 1025–1031 (2009). https://doi.org/10.1007/BF03218652

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218652

Keywords

Navigation