Advertisement

Macromolecular Research

, Volume 17, Issue 11, pp 863–869 | Cite as

Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites

  • Mi Sun Han
  • Yun Kyun Lee
  • Woo Nyon Kim
  • Heon Sang Lee
  • Jin Soo Joo
  • Min Park
  • Hyun Jung Lee
  • Chong Rae Park
Article

Abstract

The effect of a multiwalled carbon nanotube (MWCNT) dispersion on the electrical, morphological and rheological properties of polycarbonate (PC)/MWCNT composites was investigated, with and without pretreating the MWCNTs with hydrogen peroxide oxidation and lyophilization. The resulting PC/treated MWCNT composites showed higher electrical conductivity than the PC/untreated MWCNT composites. The morphological behavior indicated the treated composites to have greater dispersion of MWCNTs in the PC matrix. In addition, the electromagnetic interference shielding efficiency (EMI SE) of the treated composites was higher than that of the untreated ones. Rheological studies of the composites showed that the complex viscosity of the treated composites was higher than the untreated ones due to increased dispersion of the MWCNTs in the PC matrix, which is consistent with the electrical conductivity, EMI SE and morphological studies of the treated composites. The latter results suggested that the increased electrical conductivity and EMI SE of the treated composites were mainly due to the increased dispersion of MWCNTs in the PC matrix.

Keywords

polycarbonate/carbon nanotube composites dispersion electrical property rheology morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. Pötschke, A. R. Bhattacharyy, and A. Janke,Polymer,44, 8061 (2003).CrossRefGoogle Scholar
  2. (2).
    P. Pötschke, B. Kretzschmar, and A. Janke,Compos. Sci. Technol.,67, 855 (2007).CrossRefGoogle Scholar
  3. (3).
    S. H. Jin, D. K. Choi, and D. S. Lee,Colloid Surf. A,313, 242 (2008).CrossRefGoogle Scholar
  4. (4).
    Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon,Carbon,43, 23 (2005).CrossRefGoogle Scholar
  5. (5).
    F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey,Macromolecules,37, 9048 (2004).CrossRefGoogle Scholar
  6. (6).
    C. K. Kum, Y. T. Sung, M. S. Han, W. N. Kim, H. S. Lee, S. J. Lee, and J. Joo,Macromol. Res.,14, 456 (2006).Google Scholar
  7. (7).
    B. S. Kim, K. D. Suh, and B. Kim,Macromol. Res.,16, 76 (2008).Google Scholar
  8. (8).
    A. Eitan, F. T. Fisher, R. Andrews, L. C. Brinson, and L. S. Schadler,Compos. Sci. Technol.,66, 1162 (2006).CrossRefGoogle Scholar
  9. (9).
    Y. Huang, N. Li, Y. Ma, F. Du, F. Li, and X. He,Carbon,45, 1614 (2007).CrossRefGoogle Scholar
  10. (10).
    J. S. Joo and C. Y. Lee,J. Appl. Phys.,88, 513 (2000).CrossRefGoogle Scholar
  11. (11).
    Z. Liu, G. Bai, T. Huang, Y. Ma, F. Du, and F. Li,Carbon,45, 821 (2007).CrossRefGoogle Scholar
  12. (12).
    Y. J. Kim, K. J. An, K. S. Suh, H. D. Choi, J. H. Kwon, and Y. C. Chung,IEEE Trans. Electromagn. Compat.,47, 872 (2005).CrossRefGoogle Scholar
  13. (13).
    Y. Yang and M. C. Gupta,Nano Lett.,5, 2131 (2005).CrossRefGoogle Scholar
  14. (14).
    H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, and H. S. Yoon,Appl. Phys. Lett.,84, 589 (2004).CrossRefGoogle Scholar
  15. (15).
    N. Li, Y. Huang, F. Du, X. He, X. Lin, and H. Gao,Nano Lett.,6, 1141 (2006).CrossRefGoogle Scholar
  16. (16).
    Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, and C. K. Kum,Polymer,47, 4434 (2006).CrossRefGoogle Scholar
  17. (17).
    E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. ThorpePhys. Rev. E,52, 819 (1995).CrossRefGoogle Scholar
  18. (18).
    S. Lefrant,Curr. Appl. Phys.,2, 479 (2002).CrossRefGoogle Scholar
  19. (19).
    N. F. Colaneri and L.W. Shacklette,IEEE Trans. Instr. Meas.,41, 921 (1992).CrossRefGoogle Scholar
  20. (20).
    B. Fugetsu, E. Sano, M. Sunada, Y. Sambongi, T. Shibuya, and X. Wang,Carbon,46, 1175 (2008).CrossRefGoogle Scholar
  21. (21).
    Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence,Adv. Mater.,17, 1999 (2005).CrossRefGoogle Scholar
  22. (22).
    D. D. L. Chung,Carbon,39, 279 (2001).CrossRefGoogle Scholar
  23. (23).
    D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd ed., Taylor & Francis, London, 1992.Google Scholar
  24. (24).
    I. Park, M. Park, and J. Kim,Macromol. Res.,16, 498 (2007).Google Scholar
  25. (25).
    P. C. Ma, B. Z. Tang, and J. K. Kim,Carbon,46, 1497 (2008).CrossRefGoogle Scholar
  26. (26).
    K. H. Kim and W. H. Jo,Macromol. Res.,16, 749 (2008).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  • Mi Sun Han
    • 1
  • Yun Kyun Lee
    • 1
  • Woo Nyon Kim
    • 1
  • Heon Sang Lee
    • 2
  • Jin Soo Joo
    • 3
  • Min Park
    • 4
  • Hyun Jung Lee
    • 4
  • Chong Rae Park
    • 5
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.Department of Chemical EngineeringDong-A UniversityBusanKorea
  3. 3.Department of PhysicsKorea UniversitySeoulKorea
  4. 4.Hybrid Materials Research CenterKorea Institute of Science and TechnologySeoulKorea
  5. 5.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations