Macromolecular Research

, Volume 17, Issue 10, pp 807–812 | Cite as

Tumbling dynamics of rod-like and semi-flexible polymers in simple shear and mixed flows

  • Joo Sung Lee
  • Ju Min Kim


In this work, we focus on the tumbling dynamics of rod-like and semi-flexible polymers in mixed flows, which vary from simple shear to pure rotation. By employing a bead-rod model, the tumbling pathways and periods are examined with a focus on the angular distribution of their orientation. Under the mixed flows, the tumbling dynamics agreed well with earlier studies and confirmed the predicted scaling laws. We found that the angular distribution deviates from that of shear flow as the flow type approaches pure rotation. Finally, we investigated the angular distribution of λ-DNA in a shear flow and found that the present numerical simulations were in quantitative agreement with the previous experimental data.


brownian dynamics mixed flows rod-like polymers semi-flexible polymers tumbling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. S. Doyle, J. Bibette, A. Bancaud, and J. L. Viovy,Science,295, 2237 (2002).CrossRefGoogle Scholar
  2. (2).
    N. P. Teclemariam, V. A. Beck, E. S. G. Shaqfeh, and S. J. Muller,Macromol.,40, 3848 (2007).CrossRefGoogle Scholar
  3. (3).
    J. M. Kim and P. S. Doyle,Lab Chip,7, 213 (2007).CrossRefGoogle Scholar
  4. (4).
    R. G. Larson,J. Rheol.,49, 1 (2005).CrossRefGoogle Scholar
  5. (5).
    E. S. G. Shaqfeh,J. Non-Newton. Fluid Mech.,130, 1 (2005).CrossRefGoogle Scholar
  6. (6).
    T. T. Perkins, D. E. Smith, and S. Chu,Science,276, 2016 (1997).CrossRefGoogle Scholar
  7. (7).
    D. E. Smith, H. P. Babcock, and S. Chu,Science,283, 1724 (1999).CrossRefGoogle Scholar
  8. (8).
    C. M. Schroeder, R. E. Teixeira, E. S. G. Shaqfeh, and S. Chu,Phys. Rev. Lett.,95, 018301 (2005).CrossRefGoogle Scholar
  9. (9).
    R. E. Teixeira, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu,Macromolecules,38, 581 (2005).CrossRefGoogle Scholar
  10. (10).
    J. S. Lee, R. Dylla-Spears, N. P. Teclemariam, and S. J. Muller,Appl. Phys. Lett.,90, 074103 (2007).CrossRefGoogle Scholar
  11. (11).
    A. Celani, A. Puliafito, and K. Turitsyn,Europhys. Lett.,70, 464 (2005).CrossRefGoogle Scholar
  12. (12).
    K. S. Turitsyn,J. Exp. Theo. Phys.,105, 655 (2007).CrossRefGoogle Scholar
  13. (13).
    S. Gerashchenko and V. Steinberg,Phys. Rev. Lett.,96, 038304 (2006).CrossRefGoogle Scholar
  14. (14).
    J. S. Lee, E. S. G. Shaqfeh, and S. J. Muller,Phys. Rev. E,75, 040802 (2007).CrossRefGoogle Scholar
  15. (15).
    B. Maier and J. O. Radler,Macromolecules,33, 7185 (2000).CrossRefGoogle Scholar
  16. (16).
    R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager,Dynamics of Polymeric Liquids, Wiley, New York, 1987, Vol. 2.Google Scholar
  17. (17).
    P. S. Doyle, E. S. G. Shaqfeh, and A. P. Gast,J. Fluid Mech.,334, 251 (1997).CrossRefGoogle Scholar
  18. (18).
    M. Doi and S. F. Edwards,The Theory of Polymer Dynamics, Oxford Univ. Press, 1988.Google Scholar
  19. (19).
    A. Puliafito and K. Turitsyn,Physica D,211, 9 (2005).CrossRefGoogle Scholar
  20. (20).
    E. J. Hinch and L. G. Leal,J. Fluid Mech.,92, 591 (1979).CrossRefGoogle Scholar
  21. (21).
    M. Somasi, B. Khomami, N. J. Woo, J. S. Hur, and E. S. G. Shaqfeh, J. Non-Newton.Fluid Mech.,108, 227 (2002).Google Scholar
  22. (22).
    T. W. Liu,J. Chem. Phys.,90, 5826 (1989).CrossRefGoogle Scholar
  23. (23).
    C. C. Hsieh, S. Jain, and R. G. Larson,J. Chem. Phys.,124, 044911 (2006).CrossRefGoogle Scholar
  24. (24).
    J. S. Hur, E. S. G. Shaqfeh, and R. G. Larson,J. Rheol.,44, 713 (2000).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  1. 1.Battery R&D, LG Chem / Research ParkDaejeonKorea
  2. 2.Department of Chemical EngineeringAjou UniversitySuwonKorea

Personalised recommendations