Macromolecular Research

, Volume 17, Issue 10, pp 739–745 | Cite as

Synthesis and properties of novel flame-retardant and thermally stable poly(amideimide) s fromN,N′-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids and phosphine oxide moiety by two different methods

  • Khalil Faghihi
  • Mohsen Hajibeygi
  • Meisam Shabanian


N,N′-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids3a-g were synthesized by the condensation reaction of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride1 with two equimolars of Lalanine2a, L-valine2b, L-leucine2c, L-isoleucine2d, L-phenyl alanine2e, L-2-aminobutyric acid2f and L-histidine2g in an acetic acid solution. Seven new poly(amide-imide)s PAIs5a-g were synthesized through the direct polycondensation reaction of seven chiralN,N′-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-L-amino acids3a-g with bis(3-amino phenyl) phenyl phosphine oxide4 by two different methods: direct polycondensation in a medium consisting ofN-methyl-2-pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride (CaCl2)/pyridine (py), and direct polycondensation in a tosyl chloride (TsCl)/pyridine (py)/N,N-dimethylformamide (DMF) system. The polymerization reaction produced a series of flame-retardant and thermally stable poly(amide-imide)s5a-g with high yield. The resulted polymers were fully characterized by FTIR,1H NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Data obtained by thermal analysis (TGA and DTG) revealed that the good thermal stability of these polymers. These polymers can be potentially utilized in flame retardant thermoplastic materials.


high-performance polymer phosphine oxide thermally stable poly(amide-imide) optically active polymer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. Saxena, V. L. Rao, P. V. Prabhakaran, and K. N. Ninan,Eur. Polym. J.,39, 401 (2003).CrossRefGoogle Scholar
  2. (2).
    G. Bier,Adv. Chem. Ser.,91, 612 (1969).CrossRefGoogle Scholar
  3. (3).
    C. P. Yang, Y. P. Chen, and E. M. Woo,Polymer,45, 5279 (2004).CrossRefGoogle Scholar
  4. (4).
    A. Boulares, M. Tessier, and E. Marechal,Polymer,41, 3561 (2000).CrossRefGoogle Scholar
  5. (5).
    Z. Ge, S. Yang, Z. Tao, J. Liu, and L. Fan,Polymer,45, 3627 (2004).CrossRefGoogle Scholar
  6. (6).
    D. J. Liaw, P. N. Hsu, W. H. Chen, and S. L. Lin,Macromolecules,35, 4669 (2002).CrossRefGoogle Scholar
  7. (7).
    S. G. Hahm, S. Choi, S. H. Hong, T. J. Lee, S. Park, D. M. Kim, W. S. Kwon, K. Kim, O. Kim, and M. Ree,Adv. Funct. Mater.,18, 3276 (2008).CrossRefGoogle Scholar
  8. (8).
    S. G. Hahm, S. W. Lee, T. J. Lee, S. A. Cho, B. Chae, Y. M. Jung, S. B. Kim, and M. Ree,J. Phys. Chem. B,112, 4900 (2008).CrossRefGoogle Scholar
  9. (9).
    S. G. Hahm, T. J. Lee, and M. Ree,Adv. Funct. Mater.,17, 1359 (2007).CrossRefGoogle Scholar
  10. (10).
    S. G. Hahm, T. J. Lee, T. Chang, J. C. Jung, W. C. Zin, and M. Ree,Macromolecules,39, 5385 (2006).CrossRefGoogle Scholar
  11. (11).
    M. Ree,Macromol. Res.,14, 1 (2006).Google Scholar
  12. (12).
    M. Ree, T. J. Shin, and S. W. Lee,Korea Polym. J.,9, 1 (2001).Google Scholar
  13. (13).
    Kh. Faghihi and M. Hagibeygi,Macromol. Res.,13, 14 (2005).Google Scholar
  14. (14).
    Kh. Faghihi and H. Naghavi,J. Appl. Polym. Sci.,96, 1776 (2005).CrossRefGoogle Scholar
  15. (15).
    S. Mallakpour and M. Kolahdoozan,J. Appl. Polym. Sci.,104, 1248 (2007).CrossRefGoogle Scholar
  16. (16).
    H. S. Jin, J. H. Chang, and J. C. Kim,Macromol. Res.,16, 503 (2008).Google Scholar
  17. (17).
    A. S. Mathews, I. Kim, and C. S. Ha,Macromol. Res.,15, 114 (2007).Google Scholar
  18. (18).
    C. H. Jung and Y. M. Lee,Macromol. Res.,16, 555 (2008).Google Scholar
  19. (19).
    C. Nguyen and A. Kim,Macromol. Res.,16, 620 (2008).Google Scholar
  20. (20).
    E. D. Weil, S. V. Levchik, M. Ravey, and W. M. Zhu,Phosphorus. Sulfur. Silicon. Relat. Elem.,146, 17 (1999).CrossRefGoogle Scholar
  21. (21).
    J. Green,J. Fire Sci.,10, 470 (1992).CrossRefGoogle Scholar
  22. (22).
    A. M. Aaronson,Phosphorus flame retardant for a changing world. Phosphorus Chemistry, Developments in American Science, ACS Symposium Series 486, Washington, 1992, ACS, p 218.Google Scholar
  23. (23).
    K. S. Annakutty and K. Kishore,J. Sci. Ind. Res.,48, 479 (1989).Google Scholar
  24. (24).
    J. Xu, Y. Jiao, B. Zhang, H. Qu, and G. Yang,J. Appl. Polym. Sci.,101, 731 (2006).CrossRefGoogle Scholar
  25. (25).
    S. C. Yang and J. P. Kim,J. Appl. Polym. Sci.,108, 2297 (2008).CrossRefGoogle Scholar
  26. (26).
    C. Tian, H. Wang, X. Liu, Z. Ma, H. Guo, and J. Xu,J. Appl. Polym. Sci.,89, 3137 (2003).CrossRefGoogle Scholar
  27. (27).
    H. Galip, H. Hasipoglu, and G. Gunduz,J. Appl. Polym. Sci.,74, 2906 (1999).CrossRefGoogle Scholar
  28. (28).
    J. Liu, Y. Gao, F. Wang, and M. Wu,J. Appl. Polym. Sci.,75, 384 (2000).CrossRefGoogle Scholar
  29. (29).
    T. Kashiwagi, A. B. Morgan, J. M. Antonucci, M. R. Vanlandingham, R. H. Harris, W. H. Award, and J. R. Shields,J. Appl. Polym. Sci.,89, 2072 (2003).CrossRefGoogle Scholar
  30. (30).
    Q. Wu, J. Lu, and B. Qu,Polym. Int.,52, 1326 (2003).CrossRefGoogle Scholar
  31. (31).
    Z. Y. Wang, Z. Q. Feng, and Q. Liu,J. Appl. Polym. Sci.,105, 3317 (2007).CrossRefGoogle Scholar
  32. (32).
    M. A. Espinosa, M. Galia, and V. Cadiz,J. Polym. Sci. Part A: Polym. Chem.,42, 3516 (2004).CrossRefGoogle Scholar
  33. (33).
    Y. L. Liu, R. J. Jeng, and Y. S. Chiu,J. Polym. Sci. Part A: Polym. Chem.,39, 1716 (2001).CrossRefGoogle Scholar
  34. (34).
    L. A. Rusch-Salazar and V. V. Sheares,J. Polym. Sci. Part A: Polym. Chem.,41, 2277 (2003).CrossRefGoogle Scholar
  35. (35).
    Kh. Faghihi and Kh. Zamani,J. Appl. Polym. Sci.,101, 4263 (2006).CrossRefGoogle Scholar
  36. (36).
    Kh. Faghihi,J. Appl. Polym. Sci.,102, 5062 (2006).CrossRefGoogle Scholar
  37. (37).
    Kh. Faghihi and M. Hajibeygi,J. Appl. Polym. Sci.,92, 3447 (2004).CrossRefGoogle Scholar
  38. (38).
    L. Ying-Ling, C. Yie-Chan, and C. Tsung-Yu,Polym. Inter.,52, 1256 (2003).CrossRefGoogle Scholar
  39. (39).
    Kh. Faghihi,Macromol. Res.,12, 258 (2004).CrossRefGoogle Scholar
  40. (40).
    L. Cianga,Eur. Polym. J.,39, 2271 (2003).CrossRefGoogle Scholar
  41. (41).
    Kh. Fghihi,J. Appl. Polym. Sci.,109, 74 (2008).CrossRefGoogle Scholar
  42. (42).
    L. Angiolini, T. Benelli, L. Giorgini, and E. Salatelli,Polymer,46, 2424 (2005).CrossRefGoogle Scholar
  43. (43).
    D. W. Van Krevelen and P. J. Hoftyzer,Properties of Polymer, Elsevier Scientific Publishing Company, New York, 1976.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  • Khalil Faghihi
    • 1
  • Mohsen Hajibeygi
    • 1
  • Meisam Shabanian
    • 1
  1. 1.Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of ScienceArak UniversityArakIran

Personalised recommendations