Macromolecular Research

, Volume 17, Issue 1, pp 26–30 | Cite as

Preparation and properties of modified PHEMA hydrogels containing thermo-responsive pluronic component

  • Kwang-Hyun Hong
  • Young-Sil Jeon
  • Ji-Heung Kim


To modify and strengthen the properties of PHEMA hydrogel, composite hydrogels containing varying amounts of a Pluronic (PEO-PPO-PEO) component were synthesized by bulk polymerization of HEMA in the presence of Pluronic dimethacrylate under mild photoinitiating conditions. The effects of the Pluronic component on gel properties were investigated by measuring the degree of swelling with its temperature responsive behavior, the mechanical properties, and the morphology of the composite hydrogels. With increased Pluronic content, the modified PHEMA hydrogels exhibited an increase in the degree of swelling, and the swelling showed an enhanced thermo-responsive behavior that was completely reversible. In addition, improved mechanical strength and the development of a microporous gel morphology were observed in hydrogels containing Pluronic.


PHEMA Pluronic F127 thermo-responsive swelling photo-polymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Eds.,Biomaterials Science, 2nd Ed., Elsevier Academic Press, UK, 2004.Google Scholar
  2. (2).
    T. Okano, Y. H. Bae, H. Jacobs, and S. W. Kim,J. Control. Release,11, 255 (1990).CrossRefGoogle Scholar
  3. (3).
    M. R. Kim and T. G. Park,J. Control. Release,80, 69 (2002).CrossRefGoogle Scholar
  4. (4).
    I. Ankareddi and C. S. Brazel,Inter. J. Pharm.,336, 241 (2007).CrossRefGoogle Scholar
  5. (5).
    E. Ruel-Gariépy and J. C. Leroux,Eur. J. Pharm. Biopharm.,58, 409 (2004).CrossRefGoogle Scholar
  6. (6).
    D. Cohn, G. Lando, A. Sosnik, S. Garty, and A. Levi,Biomaterials,27, 1718 (2006).CrossRefGoogle Scholar
  7. (7).
    A. R. Khare and N. A. Peppas,Biomaterials,16, 559 (1995).CrossRefGoogle Scholar
  8. (8).
    M. D. Determan, J. P. Cox, and S. K. Mallapragada,Journal of Biomaterials Research Part A,81A, 326 (2007).CrossRefGoogle Scholar
  9. (9).
    G. M. Halpenny, M. M. Olmstead, and P. K. Mascharak,Inorg. Chem.,46, 6601 (2007).CrossRefGoogle Scholar
  10. (10).
    H. He, X. Cao, and L. J. Lee,J. Control. Release,95, 391 (2004).CrossRefGoogle Scholar
  11. (11).
    D. A. Chiappetta and A. Sosnik,Eur. J. Pharm. Biopharm.,66, 303 (2007).CrossRefGoogle Scholar
  12. (12).
    J. L. Drury and D. J. Mooney,Biomaterials,24, 4337 (2003).CrossRefGoogle Scholar
  13. (13).
    H. A. Von Recum, S. W. Kim, A. Kikuchi, M. Okuhara, Y. Sakurai, and T. Okano,J. Biomed. Mater. Res.,40, 631 (1998).CrossRefGoogle Scholar
  14. (14).
    H. J. Chung, Y. Lee, and T. G. Park,J. Control. Release,127, 22 (2008).CrossRefGoogle Scholar
  15. (15).
    C. C. Li, M. Abrahamson, Y. Kapoor, and A. Chauhan, J. ColloidInterf. Sci.,315, 297 (2007).Google Scholar
  16. (16).
    G. David, B. C. Simionescu, and A. C. Albertsson,Biomacromolecules,9, 1678 (2008).CrossRefGoogle Scholar
  17. (17).
    F. Ayhan and S. Ozkan,Drug Deliv.,14, 433 (2007).CrossRefGoogle Scholar
  18. (18).
    Y. K. Son, Y. P. Jung, and J. H. Kim,Macromol. Res.,14, 394 (2006).CrossRefGoogle Scholar
  19. (19).
    Y. P. Jung, Y. K. Son, and J. H. Kim,Macromol. Res.,15, 82 (2007).CrossRefGoogle Scholar
  20. (20).
    Y. P. Jung, J. H. Kim, D. S. Lee, and Y. H. Kim,J. Appl. Polym. Sci.,104, 2484 (2007).CrossRefGoogle Scholar
  21. (21).
    A. S. Sosnik, D. Cohn, J. S. Roman, and G. A. Abraham,J. Biomater. Sci. Polym. Ed.,14, 227 (2003).CrossRefGoogle Scholar
  22. (22).
    L. Yin, L. Fei, C. Tang, and C. Yin,Polym. Int.,56, 1563 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Polymer Technology InstituteSungkyunkwan UniversityGyeonggiKorea

Personalised recommendations