Macromolecular Research

, Volume 16, Issue 7, pp 631–636 | Cite as

Intrinsic viscosity and unperturbed dimension of poly(dl-lactic acid) solution

  • Jae Sung Lee
  • Sung Chul Kim
  • Hwan Kwang Lee


The intrinsic viscosities were determined for poly(DL-lactic acid) (PDLLA) solutions in 1,2-dialkyl phthalate at temperatures ranging from 30 to 60 °C. A series of dialkyl phthalate, in which the alkyl group was changed from methyl to propyl, was used as the solvent to control the solvent quality systematically. The intrinsic viscosity of the PDLLA solution was higher in the better quality solvent, with a higher molecular weight of PDLLA, and at lower temperatures. The unperturbed dimensions of the PDLLA molecule and polymer-solvent interaction parameter of PDLLA in dialkyl phthalate were deduced using extrapolation methods based on the temperature-dependent intrinsic viscosities. Slight shrinkage in the unperturbed chain dimension was observed, which resulted from a change in polymer conformation with temperature. It was also observed that the polymer-solvent interaction became more favorable with the dialkyl phthalate containing a shorter alkyl chain.


poly(lactic acid) polymer solution intrinsic viscosity unperturbed dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. K. Kulkarni, E. G. Moore, A. F. Hegyeli, and F. Leonard,J. Biomed. Mater. Res.,5, 169 (1971).CrossRefGoogle Scholar
  2. (2).
    D. K. Yoo, D. Kim, and D. S. Lee,Macromol. Res.,13, 68 (2005).CrossRefGoogle Scholar
  3. (3).
    Z. Gugala and S. Gogolewski,J. Biomed. Mater. Res.,49, 183 (2000).CrossRefGoogle Scholar
  4. (4).
    K. Y. Cai, K. D. Yao, Y. L. Cui, Z. M. Yang, X. Q. Li, H. Q. Xie, T. W. Qing, and L. B. Gao,Biomaterials,23, 1603 (2002).CrossRefGoogle Scholar
  5. (5).
    J. Yang, J. Z. Bei, and S. G. Wang,Biomaterials,23, 2607 (2002).CrossRefGoogle Scholar
  6. (6).
    K. Park, H. J. Jung, J. J. Kim, K. D. Ahn, D. K. Han, and Y. M. Ju,Macromol. Res.,14, 552 (2006).CrossRefGoogle Scholar
  7. (7).
    F. Castelli, B. Conti, U. Conte, and G. Puglisi,J. Control. Release,40, 277 (1996).CrossRefGoogle Scholar
  8. (8).
    J. Tams, C. A. P. Joziasse, R. R. M. Bos, F. R. Rozema, D. W. Grijpma, and A. J. Pennings,Biomaterials,16, 1409 (1995).CrossRefGoogle Scholar
  9. (9).
    J. S. Lee, H. K. Lee, J. Y. Kim, S. H. Hyon, and S. C. Kim,J. Appl. Polym. Sci.,88, 2224 (2003).CrossRefGoogle Scholar
  10. (10).
    J. S. Lee, H. K. Lee, and S. C. Kim,Polymer,45, 4491 (2004).CrossRefGoogle Scholar
  11. (11).
    A. E. Tonelli and P. J. Flory,Macromolecules,2, 225 (1969).CrossRefGoogle Scholar
  12. (12).
    D. A. Brant, A. E. Tonelli, and P. J. Flory,Macromolecules,2, 228 (1969).CrossRefGoogle Scholar
  13. (13).
    P. J. Flory,Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953.Google Scholar
  14. (14).
    W. H. Stockmayer and M. Fixman,J. Polym. Sci. C,1, 137 (1963).Google Scholar
  15. (15).
    M. Kurata and W. H. Stockmayer,Adv. Polym. Sci.,3, 196 (1963).CrossRefGoogle Scholar
  16. (16).
    G. C. Berry,J. Chem. Phys.,46, 1338 (1967).CrossRefGoogle Scholar
  17. (17).
    H. Inagaki, H. Suzuki, and M. Kurata,J. Polym. Sci. C,15, 409 (1966).Google Scholar
  18. (18).
    P. J. Flory,Statistical Mechanics of Chain Molecules, Interscience, New York, 1969.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2008

Authors and Affiliations

  • Jae Sung Lee
    • 1
  • Sung Chul Kim
    • 1
  • Hwan Kwang Lee
    • 2
  1. 1.Center for Advanced Functional Polymers Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Cosmetic ScienceChungwoon UniversityChungnamKorea

Personalised recommendations