Macromolecular Research

, Volume 16, Issue 6, pp 544–548 | Cite as

Temperature controllable hplc column for preparative fractionation of polymers

  • Kyuhyun Im
  • Hae-woong Park
  • Youngtak Kim
  • Taihyun Chang


An HPLC column with a self-contained temperature control device was constructed for preparative temperature programmed interaction chromatography. Two Peltier plates were attached to a large bore column (120×22 mm i.d.) and the column temperature was controlled by PID mode feed back control. At a flow rate of 1.5 mL/min, the column temperature could be increased and decreased at a rate as high as 50 °C/min and 10 °C/min, respectively, which is much faster than using a column jacket and bath/circulator. The rapid heating and cooling rates allows a high repetition rate of chromatographic fractionation. The performance of the temperature controllable column was demonstrated successfully by the fractionation of homo-polymer precursors from diblock copolymers.


polymer fractionation HPLC column temperature control Peltier device temperature gradient interaction chromatography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. F. Rabek,Experimental Methods in Polymer Chemistry, Wiley, New York, 1980.Google Scholar
  2. (2).
    S. Mori and H. G. Barth,Size Exclusion Chromatography, Springer Verlag, New York, 1999.Google Scholar
  3. (3).
    H. Cho, S. Park, M. Ree, T. Chang, J. C. Jung, and W. C. Zin,Macromol. Res.,14, 383 (2006).CrossRefGoogle Scholar
  4. (4).
    G. Glöckner,Gradient HPLC of Copolymers and Chromato-Graphic Cross-fractionation, Springer Verlag, Berlin, 1992.Google Scholar
  5. (5).
    H. Pasch and B. Trathnigg,HPLC of Polymers, Springer-Verlag, Berlin, 1997.Google Scholar
  6. (6).
    T. Chang,Adv. Polym. Sci.,163, 1 (2003).Google Scholar
  7. (7).
    T. Chang,J. Polym. Sci. Part B: Polym. Phys.,43, 1591 (2005).CrossRefGoogle Scholar
  8. (8).
    P. Schoenmakers, F. Fitzpatrick, and R. Grothey,J. Chromatogr. A,965, 93 (2002).CrossRefGoogle Scholar
  9. (9).
    T. Chang, H. C. Lee, W. Lee, S. Park, and C. Ko,Macromol. Chem. Phys.,200, 2188 (1999).CrossRefGoogle Scholar
  10. (10).
    H. C. Lee, W. Lee, and T. Chang,Korea Polym. J.,4, 160 (1996).Google Scholar
  11. (11).
    J. Ryu and T. Chang,Anal. Chem.,77, 6347 (2005).CrossRefGoogle Scholar
  12. (12).
    B. A. Jones, J. Liq.Chromatogr. Rel. Technol.,27, 1331 (2004).CrossRefGoogle Scholar
  13. (13).
    H. C. Lee and T. Chang,Polymer,37, 5747 (1996).CrossRefGoogle Scholar
  14. (14).
    W. Lee, H. Lee, J. Cha, T. Chang, K. J. Hanley, and T. P. Lodge,Macromolecules,33, 5111 (2000).CrossRefGoogle Scholar
  15. (15).
    H. C. Lee, T. Chang, S. Harville, and J. W. Mays,Macromolecules,31, 690 (1998).CrossRefGoogle Scholar
  16. (16).
    D. Cho, S. Park, T. Chang, K. Ute, I. Fukuda, and T. Kitayama,Anal. Chem.,74, 1928 (2002).CrossRefGoogle Scholar
  17. (17).
    I. Park, S. Park, D. Cho, T. Chang, E. Kim, K. Lee, and Y. J. Kim,Macromolecules,36, 8539 (2003).CrossRefGoogle Scholar
  18. (18).
    S. Park, D. Cho, K. Im, T. Chang, D. Uhrig, and J. W. Mays,Macromolecules,36, 5834 (2003).CrossRefGoogle Scholar
  19. (19).
    K. Im, S. Park, D. Cho, T. Chang, K. Lee, and N. Choi,Anal. Chem.,76, 2638 (2004).CrossRefGoogle Scholar
  20. (20).
    S. Park, I. Park, T. Chang, and C. Y. Ryu,J. Am. Chem. Soc.,126, 8906 (2004).CrossRefGoogle Scholar
  21. (21).
    S. Park and T. Chang,Macromolecules,39, 3466 (2006).CrossRefGoogle Scholar
  22. (22).
    S. Park, C. Ko, H. Choi, K. Kwon, and T. Chang,J. Chromatogr. A,1123, 22 (2006).CrossRefGoogle Scholar
  23. (23).
    K. Im, H. W. Park, Y. Kim, B. H. Chung, M. Ree, and T. H. Chang,Anal. Chem.,79, 1067 (2007).CrossRefGoogle Scholar
  24. (24).
    P. G. Santangelo, C. M. Roland, T. Chang, D. Cho, and J. Roovers,Macromolecules,34, 9002 (2001).CrossRefGoogle Scholar
  25. (25).
    S. Park, K. Kwon, D. Cho, B. Lee, M. Ree, and T. Chang,Macromolecules,36, 4662 (2003).CrossRefGoogle Scholar
  26. (26).
    T. Welsch, M. Schmid, J. Kutter, and A. Kalman,J. Chromatogr. A,728, 299 (1996).CrossRefGoogle Scholar
  27. (27).
    K. Kwon, W. Lee, D. Cho, and T. Chang,Korea Polym. J.,7, 321 (1999).Google Scholar
  28. (28).
    W. Lee, D. Cho, T. Chang, K. J. Hanley, and T. P. Lodge,Macromolecules,34, 2353 (2001).CrossRefGoogle Scholar
  29. (29).
    H. L. Hsieh and R. P. Quirk,Anionic Polymerization; Principles and Practical Applications, Marcel Dekker, New York, 1996.Google Scholar
  30. (30).
    N. Hadjichristidis, H. Iatrou, M. Pitsikalis, and J. Mays,Prog. Polym. Sci.,31, 1068 (2006).CrossRefGoogle Scholar
  31. (31).
    A. Hirao, Y. Tsunoda, A. Matsuo, K. Sugiyarna, and T. Watanabe,Macromol. Res.,14, 272 (2006).CrossRefGoogle Scholar
  32. (32).
    B. Chung, S. Park, and T. Chang,Macromolecules,38, 6122 (2005).CrossRefGoogle Scholar
  33. (33).
    S. Park, D. Cho, J. Ryu, K. Kwon, W. Lee, and T. Chang,Macromolecules,35, 5974 (2002).CrossRefGoogle Scholar
  34. (34).
    I. Park, S. Park, H.-W. Park, T. Chang, H. Yang, and C. Y. Ryu,Macromolecules,39, 315 (2006).CrossRefGoogle Scholar
  35. (35).
    S. W. Hwang, E. Kim, C. Shin, J. H. Kim, D. Y. Ryu, S. Park, T. Chang, and J. K. Kim,Macromolecules,40, 8066 (2007).CrossRefGoogle Scholar
  36. (36).
    S. H. Nguyen, D. Berek, and O. Chiantore,Polymer,39, 5127 (1998).CrossRefGoogle Scholar
  37. (37).
    M. Lazzari, M. Janco, T. Kitayama, and K. Hatada,Macromol. Rapid Commun.,24, 1019 (2003).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2008

Authors and Affiliations

  • Kyuhyun Im
    • 1
  • Hae-woong Park
    • 1
  • Youngtak Kim
    • 1
  • Taihyun Chang
    • 1
  1. 1.Department of Chemistry and Polymer Research InstitutePohang University of Science and TechnologyPohangKorea

Personalised recommendations