Macromolecular Research

, Volume 16, Issue 5, pp 457–466 | Cite as

Transport properties of polymer blend membranes of sulfonated and nonsulfonated polysulfones for direct methanol fuel cell application



The relation between the phase separated morphologies and their transport properties in the polymer blend membrane for direct methanol fuel cell application was studied. In order to enhance the proton conductivity and reduce the methanol crossover, sulfonated poly(arylene ether sulfone) copolymer, with a sulfonation of 60 mol% (sPAES-60), was blended with nonsulfonated poly(ether sulfone) copolymer (RH-2000, Solvay). Various morphologies were obtained by varying the drying condition and the concentration of the casting solution (10, 15, 20 wt%). The transport properties of proton and methanol molecule through the polymer blend membranes were studied according to the absorbed water. AC impedance spectroscopy was used to measure the proton conductivity and a liquid permeability measuring instrument was designed to measure the methanol permeability. The state of water in the blend membranes was confirmed by differential scanning calorimetry and was used to correlate the morphology of the membrane with the membrane transport properties.


direct methanol fuel cell (DMFC) blend membrane phase separation proton conductivity methanol crossover selectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    B. H. Steele and A. Heinzel,Nature,414, 345 (2001).CrossRefGoogle Scholar
  2. (2).
    K. Kordesch and G. Simader,Fuel cells and Their Applications, VCH Publishers Inc., New York, 1996.CrossRefGoogle Scholar
  3. (3).
    X. Ren, T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld,J. Electrochem. Soc.,147, 466 (2000).CrossRefGoogle Scholar
  4. (4).
    S. Hikita, K. Yamane, and Y. Nakajima,JSAE Rev.,22, 151 (2001).CrossRefGoogle Scholar
  5. (5).
    J. Choi, I. T. Kim, S. C. Kim, and Y. T. Hong,Macromol. Res.,13, 514 (2005).CrossRefGoogle Scholar
  6. (6).
    J. C. Woong, S. Venkataramani, and S. C. Kim,Polym. Int.,55, 491 (2006).CrossRefGoogle Scholar
  7. (7).
    S. Swier, M. T. Shaw, and R. A. Weiss,J. Membr. Sci.,270, 22 (2006).CrossRefGoogle Scholar
  8. (8).
    K. D. Kreuer,J. Membr. Sci.,185, 29 (2001).CrossRefGoogle Scholar
  9. (9).
    J. T. Wang, J. S. Wainright, R. F. Savinell, and M. Litt,J. Appl. Electrochem.,26, 751 (1996).Google Scholar
  10. (10).
    Y. Fu, A. Manthiram, and M. D. Guiver,Electrochem. Comm.,8, 1386 (2006).CrossRefGoogle Scholar
  11. (11).
    D. H. Kim, J. Choi, Y. T. Hong, and S. C. Kim,J. Membr. Sci.,299, 19 (2007).CrossRefGoogle Scholar
  12. (12).
    J. Won, J. Y. Yoo, M. -S. Kang, and Y. S. Kang,Macromol. Res.,14, 449 (2006).CrossRefGoogle Scholar
  13. (13).
    H. D. Cho, J. Won, H. Y. Ha, and Y. S. Kang,Macromol. Res.,14, 214 (2006).CrossRefGoogle Scholar
  14. (14).
    J. Li, C. H. Lee, H. B. Park, and Y. M. Lee,Macromol. Res.,14, 438 (2006).CrossRefGoogle Scholar
  15. (15).
    G. Y. Moon and J. W. Rhim,Macromol. Res.,15, 379 (2007).CrossRefGoogle Scholar
  16. (16).
    D. Seeliger, C. Hartnig, and E. Spohr,Electrochim. Acta,50, 4234 (2005).CrossRefGoogle Scholar
  17. (17).
    C. Manca, C. Tanner, and S. Leutwyler,Int. Rev. Phys. Chem.,24, 457 (2005).CrossRefGoogle Scholar
  18. (18).
    W. Xu and C. A. Angell,Science,302, 422 (2003).CrossRefGoogle Scholar
  19. (19).
    S. L. Chen, A. B. Bocarsly, and J. Benziger,J. Power Sources,152, 27 (2005).CrossRefGoogle Scholar
  20. (20).
    Y. S. Kim, L. Dong, M. A. Hickner, T. E. Glass, V. Webb, and J. E. McGrath,Macromolecules,36, 6281 (2003).CrossRefGoogle Scholar
  21. (21).
    B. S. Pivovar, Y. Wang, and E. L. Cussler,J. Membr. Sci.,154, 155 (1999).CrossRefGoogle Scholar
  22. (22).
    W. L. Harrison, M. A. Hickner, Y. S. Kim, and J. E. McGrath,Fuel Cells,2, 201 (2005).CrossRefGoogle Scholar
  23. (23).
    R. Y. Huang, P. Shao, X. Feng, and C. M. Burns,J. Membr. Sci.,192, 115 (2001).CrossRefGoogle Scholar
  24. (24).
    A. Siu, B. Pivovar, J. Horsfall, K. V. Lovell, and S. Holdcroft,J. Polym. Sci. B,44, 2240 (2006).CrossRefGoogle Scholar
  25. (25).
    A. Geoffrey,Electrochemical Engineering Principles, Prentice Hall, New Jersey, 1990.Google Scholar
  26. (26).
    M. Saito, N. Arimura, K. Hayamizu, and T. Okada,J. Phys. Chem. B,108, 16064 (2004).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2008

Authors and Affiliations

  1. 1.Polymer Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK-21 Program)Korea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations