Macromolecular Research

, Volume 14, Issue 2, pp 199–204 | Cite as

FT-raman studies on ionic interactions in π-complexes of poly(hexamethylenevinylene) with silver salts

  • Jong Hak Kim
  • Byoung Ryul Min
  • Jongok Won
  • Yong Soo Kang


Remarkably high and stable separation performance for olefin/paraffin mixtures was previously reported by facilitated olefin transport through π-complex membranes consisting of silver ions dissolved in poly(hexamethylenevinylene) (PHMV). In this study, the π-complex formation of AgBF4, AgClO4 and AgCF3SO3 with PHMV and their ionic interactions were investigated. FT-Raman spectroscopy showed that the C=C stretching bands of PHMV shifted to a lower frequency upon incorporation of silver salt, but the degree of peak shift depended on the counteranions of salt due to different complexation strengths. The symmetric stretching modes of anions indicated the presence of only free ions up to [C=C]∶[Ag]=1∶1, demonstrating the unusually high solubility of silver salt in PHMV. Above the solubility limit, the ion pairs and higher-order ionic aggregates started to form. The coordination number of silver ion for C=C of PHMV was in the order AgBF4>AgClO4>AgCF3SO3, but became similar at [C=C]∶[Ag]=1∶1. The different coordination number was interpreted in terms of the different transient crosslinks of silver cations in the complex, which may be related to both the interaction strength of the polymer/silver ion and the bulkiness of the counteranion.


π-complex silver ion poly(hexamethylenevinylene) ionic interaction spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Y. Kang. Y. H. Seo, D. W. Kim, and C. Lee,Macromol. Res.,12, 431 (2004).CrossRefGoogle Scholar
  2. (2).
    H. R. Allcock, W. R. Laredo, and R. V. Morford,Solid State Ionics,139, 27 (2001).CrossRefGoogle Scholar
  3. (3).
    H. J. Kim, M. H. Litt, S. Y. Nam, and E. M. Shin,Macromol. Res.,11, 458 (2004).CrossRefGoogle Scholar
  4. (4).
    M. A. Ratner and D. F. Shriver,Chem. Rev.,88, 109 (1988).CrossRefGoogle Scholar
  5. (5).
    R. Hooper, L. J. Lyons, D. A. Moline, and R. West,Organometallics,18, 3249 (1999).CrossRefGoogle Scholar
  6. (6).
    P. M. Blonsky, D. F. Shriver, P. E. Austin, and H. R. Allcock,J. Am. Chem. Soc.,106, 6854 (1984).CrossRefGoogle Scholar
  7. (7).
    P. Johansson, M. A. Ratner, and D. F. Shriver,J. Phys. Chem. B,105, 9016 (2001).CrossRefGoogle Scholar
  8. (8).
    J. H. Kim, B. R. Min, J. Won, and Y. S. Kang,Macromolecules,36, 4577 (2003).CrossRefGoogle Scholar
  9. (9).
    J. H. Kim, J. Won, and Y. S. Kang,Macromol. Res.,12, 145 (2004).CrossRefGoogle Scholar
  10. (10).
    J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang,Macromolecules,34, 6052 (2001).CrossRefGoogle Scholar
  11. (11).
    J. H. Kim, S. H. Joo, C. K. Kim, Y. S. Kang, and J. Won,Macromol. Res.,11, 375 (2003).CrossRefGoogle Scholar
  12. (12).
    S. Sunderrajan, B. D. Freeman, C. K. Hall, and I. Pinnau,J. Membr. Sci.,182, 1 (2001).CrossRefGoogle Scholar
  13. (13).
    T. C. Merkel, Z. He, A. Morisato, and I. Pinnau, Chem. Commun., 1596 (2003).Google Scholar
  14. (14).
    J. H. Kim, B. R. Min, J. Won, and Y. S. Kang,Chem. Eur. J.,8, 650 (2002).CrossRefGoogle Scholar
  15. (15).
    J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang,J. Phys. Chem. B.,106, 2786 (2002).CrossRefGoogle Scholar
  16. (16).
    J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang,Macromolecules,35, 5250 (2002).CrossRefGoogle Scholar
  17. (17).
    J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang,J. Polym. Sci.; Part B: Polym. Phys.,40, 1813 (2002).CrossRefGoogle Scholar
  18. (18).
    J. H. Kim, J. Won, and Y. S. Kang,J. Membr. Sci.,237, 299 (2004).CrossRefGoogle Scholar
  19. (19).
    J. H. Kim, B. R. Min, J. Won, and Y. S. Kang,J. Membr. Sci.,227, 197 (2003).CrossRefGoogle Scholar
  20. (2).
    B. Jose, J. H. Ryu, B. G. Lee, H. Lee, Y. S. Kang, and H. S. Kim, Chem. Commun., 2046 (2001).Google Scholar
  21. (21).
    J. H. Jin, S. U. Hong, J. Won, and Y. S. Kang,Macromolecules,33, 4932 (2000).CrossRefGoogle Scholar
  22. (22).
    B. L. Papke, M. A. Ratner, and D. F. Shriver,J. Electrochem. Soc.,129, 1434 (1982).CrossRefGoogle Scholar
  23. (23).
    S. Schantz, L. M. Torell, and J. R. Stevens,J. Chem. Phys.,94, 6862 (1991).CrossRefGoogle Scholar
  24. (24).
    H. Huang and R. Frech,Polymer,35, 235 (1994).CrossRefGoogle Scholar
  25. (25).
    G. Peterson, L. M. Torell, S. Panero, B. Scrosati, C. J. da Silva, and M. Smith,Solid State Ionics,60, 55 (1993).CrossRefGoogle Scholar
  26. (26).
    H. Ericson, B. Mattsson, L. M. Torell, H. Rinne, and F. Sundholm,Electrochim Acta,43, 1401 (1998).CrossRefGoogle Scholar
  27. (27).
    A. Ferry, P. Jacobsson, and L. M. Torell,Electrochim. Acta,40, 2369 (1995).CrossRefGoogle Scholar
  28. (28).
    S. Chintapalli and R. Frech,Electrochim. Acta,43, 1395 (1998).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2006

Authors and Affiliations

  1. 1.Department of Chemical EngineeringYonsei UniversitySeoulKorea
  2. 2.Department of Applied ChemistrySejong UniversitySeoulKorea
  3. 3.Division of Chemical EngineeringHanyang UniversitySeoulKorea

Personalised recommendations