Macromolecular Research

, Volume 13, Issue 4, pp 362–365 | Cite as

The effects of silica nanoparticles on the photocuring behaviors of UV-curable polyester acrylate-based coating systems

  • Jung-Dae Cho
  • Yang-Bae Kim
  • Hyoung-Tae Ju
  • Jin-Who Hong


The photocuring behaviors of UV-curable PEA-based coating systems with and without silica nanoparticles have been studied by photo-DSC, UV-visible spectroscopy, and FTIR spectroscopy. Photo-DSC analysis revealed that as the concentration of silica nanoparticles was increased up to 5 wt%, the exotherm, ultimate percentage conversion, and cure rate increased gradually, whereas they decreased above 10 wt%. This result was confirmed by FTIR spectroscopy analysis and indicated that the presence of silica nanoparticles at below 10 wt% accelerated the cure reaction and cure rate of the UV-curable PEA-based systems due to the synergistic effect of silica nanoparticles as an effective flow or diffusion-aid agent during the photopolymerization process and by lengthening the path of the UV light by partial scattering or reflection. However, a decrease in photopolymerization reactivity occurred when the silica content was increased above 10 wt%, which is attributable to aggregation of silica nanoparticles due to their high surface energy.


Silica Nanoparticles Fumed Silica Photopolymerization Silica Nanospheres Transmission FTIR Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. Zhou, L. Wu, J. Sun, and W. Shen,Prog. Org. Coat.,45, 33 (2002).CrossRefGoogle Scholar
  2. (2).
    P. Hajji, L. David, J. F. Gerard, J. P. Pascault, and G. Vigier,J. Polym. Sci.; B: Polym. Phys.,37, 3172 (1999).CrossRefGoogle Scholar
  3. (3).
    W. G. Hahn, H. S. Myoung, and S. S. Im,Macromol. Res.,12, 85 (2004).CrossRefGoogle Scholar
  4. (4).
    S. H. Ahn, S. H. Kim, B. C. Kim, K. B. Shim, and B. G. Cho,Macromol. Res.,12, 293 (2004).CrossRefGoogle Scholar
  5. (5).
    H. Kaddami, J. F. Gerard, P. Hajji, and J. P. Pascault,J. Appl. Polym. Sci.,73, 2701 (1999).CrossRefGoogle Scholar
  6. (6).
    W. A. R. van Heeswijk, P. H. Vriens, J. J. Vrancken, G. H. M. van Engelen, and C. Roux,Proceedings of RadTech Europe, Maastricht, Netherlands, 1995, p. 430.Google Scholar
  7. (7).
    C. Vu, C. Faurent, A. Eranian, P. Vincent, and D. Wilhelm,Proceedings of RadTech North America, Baltimore, USA, 2000, p. 822.Google Scholar
  8. (8).
    C. Vu, O. La Ferte, and A. Eranian,Proceedings of RadTech North America, Indianapolis, USA, 2002, p. 330.Google Scholar
  9. (9).
    J. D. Cho, E. O. Kim, H. K. Kim, and J. W. Hong,Polym. Test.,21, 781 (2002).CrossRefGoogle Scholar
  10. (10).
    J. D. Cho, H. K. Kim, Y. S. Kim, and J. W. Hong,Polym. Test.,22, 633 (2003).CrossRefGoogle Scholar
  11. (11).
    J. D. Cho and J. W. Hong,J. Appl. Polym. Sci.,93, 1473 (2004).CrossRefGoogle Scholar
  12. (12).
    J. D. Cho and J. W. Hong,Eur. Polym. J.,41, 367 (2005).CrossRefGoogle Scholar
  13. (13).
    Technical Bulletin Pigments, No. 11, Company publication, Degussa AG.Google Scholar
  14. (14).
    C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl,Polymer,42, 5531 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2005

Authors and Affiliations

  • Jung-Dae Cho
    • 1
  • Yang-Bae Kim
    • 1
  • Hyoung-Tae Ju
    • 2
  • Jin-Who Hong
    • 2
  1. 1.Institute of Photonics & Surface TreatmentQ-Sys Co. Ltd.GwangjuKorea
  2. 2.Department of Polymer Science & EngineeringChosun UniversityGwangjuKorea

Personalised recommendations