Macromolecular Research

, Volume 13, Issue 4, pp 297–305 | Cite as

The compatibilizing effect of maleic anhydride in ethylene-vinyl acetate (EVA)/ethylene-α-olefin copolymers blends

  • Soochul Park
  • Soonja Choe


The compatibilizing effect of maleic anhydride (MA) in the immiscible blends of EVA22 (vinyl acetate content 22%)/ethylene-α-olefin copolymers with 1-butene (EtBC) and 1-octene (EtOC)) comonomers was studied. By adding 1, 2, and 3 phr of MA in the presence of dicumylperoxide, the morphology, tensile strength at break, and 100 and 300 % modulus of EVA22/EtBC and EVA22/EtOC blends were significantly enhanced. The melting point and crystallization point depression were observed upon the addition of MA. The changes in the β transition and glass transition temperature of ethylene-α-olefin copolymers and ethylene-vinyl acetate copolymers, respectively, indicate that MA plays a role of compatibilizer for these immiscible blends. The TGA thermograms, measured from the blends with MA, show that thermal stability is slightly enhanced with MA, indicating that MA acts as a reinforcing agent either by grafting or crosslinking with other copolymers.


ethylene-vinyl acetate/ethylene-α-olefin copolymers maleic anhydride compatibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    L. A. Utraki, inPolymer Alloys and Blends, New York, Hanser Pub., 1989.Google Scholar
  2. (2).
    U. Sundararaj and C. W. Macosko,Macromolecules,12, 517 (1995).Google Scholar
  3. (3).
    A. Arsac, C. Carrot, and J. Guillet,J. Appl. Polym. Sci.,74, 625 (1999).CrossRefGoogle Scholar
  4. (4).
    M. Shimoyama, S. Hayano, K. Matsukawa, H. Innoue, T. Ninomiya, and Y. Ozaki,J. Polym. Sci., Polym. Phys.,36, 1529 (1998).CrossRefGoogle Scholar
  5. (5).
    M. Xanthos and S. S. Dagli,Polym. Eng. Sci.,31, 929 (1991).CrossRefGoogle Scholar
  6. (6).
    M. A. Lopez-Manchado, M. Valle, R. Sapunar, and R. Quijada,J. Appl. Polym. Sci.,92, 3008 (2004).CrossRefGoogle Scholar
  7. (7).
    M. A. Rodriguez-Perez, A. Duijsens, and J. A. de Saja,J. Appl. Polym. Sci.,68, 1237 (1998).CrossRefGoogle Scholar
  8. (8).
    J. Peon, J. F. Vega, M. Aroca, and J. Martinez-Salaza,Polymer,44, 8093 (2001); J. Peon, M. Aguilar, J. F. Vega, B. Del Amo, and J. Martinez-Salazar,Polymer,44, 1589 (2001); J. Peon, J. F. Vega, B. Del Amo, and J. Martinez-Salazar,Polymer,44, 2911 (2003).CrossRefGoogle Scholar
  9. (9).
    M. Kontopoulou, L. C. Huang, and J. A. Lee,Adv. Polym. Tech.,22, 209 (2003).CrossRefGoogle Scholar
  10. (10).
    M. Kontopoulou and L. C. Huang,J. Appl. Polym. Sci.,94, 881 (2004).CrossRefGoogle Scholar
  11. (11).
    S. Park, C. Yim, B. H. Lee, and S. Choe,Macromole. Res.,13, 243 (2005).CrossRefGoogle Scholar
  12. (12).
    S. J. Kim, C. J. Kang, S. R. Chowdhur, W. J. Cho, and C. S. Ha,J. Appl. Polym. Sci.,89, 1305 (2003).CrossRefGoogle Scholar
  13. (13).
    S. J. Kim, B. S. Shin, J. L. Hong, W. J. Cho, and C. S. Ha,Polymer,42, 4073 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2005

Authors and Affiliations

  1. 1.Department of Chemical EngineeringInha UniversityIncheonKorea

Personalised recommendations