Advertisement

Macromolecular Research

, Volume 12, Issue 4, pp 384–390 | Cite as

Chemical modification of carbon nanotubes and preparation of polystyrene/carbon nanotubes composites

  • Hyeong Taek Ham
  • Chong Min Koo
  • Sang Ouk Kim
  • Yeong Suk Choi
  • In Jae Chung
Article

Abstract

Single-walled carbon nanotubes (SWNTs) have been chemically modified through the formation of carboxylic acid functionalities or by grafting octadecylamine and polystyrene onto them. We purified SWNTs with nitric acid to remove some remaining catalysts and amorphous carbon materials. After purification, we broke the carbon nanotubes and shortened their lengths by using a 3∶1 mixture of concentrated sulfuric acid and nitric acid. During these purification and cutting processes, carboxylic acid units formed at the open ends of the SWNTs. Octadecylamine and amino-terminated polystyrene were grafted onto the cut SWNTs by condensation reactions between the amine and carboxylic acid units. The cut SWNTs did not disperse in organic solvents, but the octadecylaminegrafted and polystyrene-grafted SWNTs dispersed well in dichloromethane and aromatic solvents (e.g., benzene, toluene). Composites were prepared by mixing polystyrene with the octadecylamine-grafted or polystyrene-grafted SWNTs. Each composite had a higher dynamic storage modulus than that of a pristine polystyrene. The composites exhibited enhanced storage moduli, complex viscosities, and unusual non-terminal behavior when compared with a monodisperse polystyrene matrix because of the good dispersion of carbon nanotubes in the polystyrene matrix.

Keywords

carbon nanotubes composite chemical modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Iijima,Nature,354, 56 (1991).CrossRefGoogle Scholar
  2. (2).
    S. J. Trans, M. H. Devoret, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker,Nature,386, 474 (1997).CrossRefGoogle Scholar
  3. (3).
    E. W. Wong, P. E. Sheehan, and C. M. Lieber,Science,277, 1971 (1997).CrossRefGoogle Scholar
  4. (4).
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund,Science of Fullerenes and Carbon Nanotubes, Academic Press Inc., London, 1996, Chap.19.Google Scholar
  5. (5).
    T. W. Ebbesen,Carbon Nanotubes, CRC Press, Boca Raton, 1997.Google Scholar
  6. (6).
    B. I. Yakobson, C. J. Brabec, and J. Bernholc,Phys. Rev. Lett.,76, 2511 (1996).CrossRefGoogle Scholar
  7. (7).
    P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth,Science,265, 1212 (1994).CrossRefGoogle Scholar
  8. (8).
    M. S. P. Shaffer and A. H. Windle,Adv. Mater.,11, 937 (1999).CrossRefGoogle Scholar
  9. (9).
    P. M. Ajayan, L.S. Schadler, C. Giannaris, and A. Rubio,Adv. Mater.,12, 750 (2000).CrossRefGoogle Scholar
  10. (10).
    D. Qian, E. C. Dickey, R. Andrews, and T. Rantell,Appl. Phys. Lett.,76, 2868 (2000).CrossRefGoogle Scholar
  11. (11).
    J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon,Science,282, 95 (1998).CrossRefGoogle Scholar
  12. (12).
    M. A. Hamon, J. Chen, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon,Adv. Mater.,11, 834 (1999).CrossRefGoogle Scholar
  13. (13).
    J. E. Riggs, Z. Guo, D. L. Carrol, and Y. P. Sun,J. Am. Chem. Soc.,122, 5879 (2000).CrossRefGoogle Scholar
  14. (14).
    P. J. Boul, J. Liu, E. T. Mikelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, and R. E. Smalley,Chem. Phys. Lett.,310, 367 (1999).CrossRefGoogle Scholar
  15. (15).
    C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti,Macromolecules,35, 8825 (2002).CrossRefGoogle Scholar
  16. (16).
    J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley,Science,280, 1253 (1998).CrossRefGoogle Scholar
  17. (17).
    R. C. Haddon,Nature,378, 249 (1995).CrossRefGoogle Scholar
  18. (18).
    S. Gélinas, J. A. Finch, and A. Vreugdenhil,J. Colloids Surfaces A,164, 257 (2000).CrossRefGoogle Scholar
  19. (19).
    H. Hiura, T. W. Ebbesen, and K. Tanigaki,Adv. Mater.,7, 275 (1995).CrossRefGoogle Scholar
  20. (20).
    J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, and R. C. Haddon,J. Phys. Chem. B,105, 2525 (2001).CrossRefGoogle Scholar
  21. (21).
    R. Krishnamoorti and E. P. Giannelis,Macromolecules,30, 4097 (1997).CrossRefGoogle Scholar
  22. (22).
    G. Galgali, C. Ramesh, and A. Lele,Macromolecules,34, 852 (2001).CrossRefGoogle Scholar
  23. (23).
    W. S. Kim, H. S. Song, B. O. Lee, K. H. Kwon, Y. S. Lim, and M. S. Kim,Macromol. Res.,10, 253 (2002).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2004

Authors and Affiliations

  • Hyeong Taek Ham
    • 1
  • Chong Min Koo
    • 1
  • Sang Ouk Kim
    • 1
  • Yeong Suk Choi
    • 1
  • In Jae Chung
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringKAIST (Korea Advanced Institute of Science and Technology)DaejeonKorea

Personalised recommendations