Macromolecular Research

, Volume 12, Issue 2, pp 178–188 | Cite as

Evaluation of internal structure and morphology of poly(benzyl ether) dendrimers by molecular dynamics simulations

  • Taewan Hong
  • Hyung-Il Kim


We performed molecular dynamics (MD) simulations at 300 K on a series of poly(benzyl ether) (PBE) dendrimers having a different core functionalities. We used the rotational isomeric state Metropolis Monte Carlo (RMMC) method to construct the initial configuration in a periodic boundary cell (PBC) before the MD simulations were undertaken. To elucidate the effects that the structural features have on the chain dimension, the overall internal structure, and the morphology, we monitored the radii of gyration,Rg, and the conformational changes during the simulations. The PBE dendrimers in a glassy state adopted less-extended structures when compared with the conformations obtained from the RMMC calculations. We found thatRg of the PBE dendrimer depends on the molecular weight,M, according to the relation,R g M 0.22. The radial distributions of the dendrimers were developed identically in the PBC, irrespective of the core functionality. A gradual decrease in radial density resulted from the fact that the terminal branch ends are distributed all over the molecule, except for the core region.


dendrimer internal structure molecular dynamics simulation poly(benzyl ether) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    C. J. Hawker and J. M. J. Fretchet,J Chem. Soc., Chem. Commun.,15, 1010 (1990).CrossRefGoogle Scholar
  2. (2).
    D. A. Tomalia, H. Baker, J. Dewald, M. Hall, S. Martin, J. Roeck, J. Ryder, and P. Smith,Polym. J.,17, 117 (1985).CrossRefGoogle Scholar
  3. (3).
    D. A. Tomalia and L. R. Wilson,U.S. Patent, 4,713,975 (1987).Google Scholar
  4. (4).
    $F. M. Winnik, A. R. Davidson, and M. P. Breton,U.S. Patent, 5,120,361 (1992).Google Scholar
  5. (5).
    D. A. Tomalia and P. R. Dvornic,Nature,372, 617 (1994).CrossRefGoogle Scholar
  6. (6).
    C. Kim, B. W. Koo, S. B. Lee, and C. K. Song,Macromol. Res.,10, 178 (2002).CrossRefGoogle Scholar
  7. (7).
    L. J. Twyman, A. E. Beezer, R. Esfand, M. J. Hardy, and J. C. Mitchell,Tetrahedron Lett.,40, 1743 (1999).CrossRefGoogle Scholar
  8. (8).
    E. C. Wiener, M. W. Brechbiel, H. Brothers, R. L. Magin, O. A. Gansow, D. A. Tomalia, and P. C. Lauterbur,Magn. Reson. Med.,31, 1 (1994).CrossRefGoogle Scholar
  9. (9).
    J. Haensler and F. C. Szoka,Bioconjugate Chem.,4, 372 (1993).CrossRefGoogle Scholar
  10. (10).
    M. F. Ottaviani, F. Furini, A. Casini, N. J. Turro, S. Jockusch, D. A. Tomalia, and L. Messori,Macromolecules,33, 7842 (2000).CrossRefGoogle Scholar
  11. (11).
    C. Rao and J. P. Tam,J. Am. Chem. Soc.,116, 975 (1994).CrossRefGoogle Scholar
  12. (12).
    R. L. Lescanec and M. Muthukumar,Macromolecules,23, 2280 (1990).CrossRefGoogle Scholar
  13. (13).
    M. Ballauff,Top. Curr. Chem.,212, 177 (2001).CrossRefGoogle Scholar
  14. (14).
    S. Hecht and J. M. J. Fretchet,J. Am. Chem. Soc.,121, 4084 (1999).CrossRefGoogle Scholar
  15. (15).
    P. G. de Gennes and H. Hervet,J. Phys. Lett.,44, L351 (1983).CrossRefGoogle Scholar
  16. (16).
    K. J. Naidoo, S. J. Hughes, and J. R. Moss,Macromolecules,32, 331 (1999).CrossRefGoogle Scholar
  17. (17).
    I. Lee, B. D. Athey, A. W. Wetzel, W. Meixner, and J. R. Baker, Jr.,Macromolecules,35, 4510 (2002).CrossRefGoogle Scholar
  18. (18).
    N. Zacharopoulos and I. G. Economou,Macromolecules,35, 1814 (2002).CrossRefGoogle Scholar
  19. (19).
    S. H. Yang, J. S. Yang, and W. H. Jo,Korea Polym. J.,8, 224 (2000).Google Scholar
  20. (20).
    S. S. Choi,Korea Polym. J.,8, 125 (2000).Google Scholar
  21. (21).
    J. D. Honneycutt,Compt. Theor. Polym. Sci.,8, 1 (1998).CrossRefGoogle Scholar
  22. (22).
    D. Boris and M. Rubinstein,Macromolecules,29, 7251 (1996).CrossRefGoogle Scholar
  23. (23).
    M. Murat and G. S. Grest,Macromolecules,29, 1278 (1996).CrossRefGoogle Scholar
  24. (24).
    A. M. Naylor, N. A. Goddard, G. E. Kiefer, and D. A. Tomalia,J. Am. Chem. Soc.,111, 2339 (1989).CrossRefGoogle Scholar
  25. (25).
    M. L. Mansfield and L. I. Klushin,Macromoleucles,26, 4262 (1993).CrossRefGoogle Scholar
  26. (26).
    M. L. Mansfield,Macromoleucles,33, 8043 (2000).CrossRefGoogle Scholar
  27. (27).
    E. J. Wallace, D. M. A. Buzza, and D. J. Read,Macromolecules,34, 7140 (2001).CrossRefGoogle Scholar
  28. (28).
    W. L. Jorgenssen and J. Tirado-Ries,J. Phys. Chem.,100, 14508 (1996).CrossRefGoogle Scholar
  29. (29).
    H. Sun,J. Comp. Chem.,15, 752 (1994).CrossRefGoogle Scholar
  30. (30).
    D. Rigby, H. Sun, and B. E. Eichinger,Polymer Int.,44, 311 (1997).CrossRefGoogle Scholar
  31. (31).
    H. Sun and D. Rigby,Spectrochimica Acta Part A,53, 1301 (1997).CrossRefGoogle Scholar
  32. (32).
    T. H. Mourey, S. R. Turner, M. Rubinstein, J. M. J. Fretchet, C. J. Hawker, and K. L.Wooley,Macromolecules,25, 2401 (1992).CrossRefGoogle Scholar
  33. (33).
    S. de Backer, Y. Prinzie, W. Verheijen, M. Smet, K. Desmedt, W. Dehaen, and F. C. de Schryver,J. Phys. Chem. A,102, 5451 (1998).CrossRefGoogle Scholar
  34. (34).
    K. Jung, H. Kim, and J. Liu,Korea Polym. J.,8, 59 (2000).Google Scholar
  35. (35).
    B. H. Zimm and W. H. Stockmayer,J. Chem. Phys.,17, 1301 (1949).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2004

Authors and Affiliations

  • Taewan Hong
    • 1
  • Hyung-Il Kim
    • 1
  1. 1.Department of Fine Chemicals Engineering and ChemistryChungnam National UniversityDaejeonKorea

Personalised recommendations