Macromolecular Research

, Volume 10, Issue 2, pp 91–96 | Cite as

The effects of intramolecular interactions of random copolymers on the phase behavior of polymer mixtures

  • M. J. Kim
  • J. E. Yoo
  • H. K. Choi
  • C. K. Kim


To explore the effects of intramolecular interactions within the copolymer on the phase separation behavior of polymer blends, copolymers having two different types of intramolecular interactions, i.e., intramolecular repulsion and intramolecular attraction were prepared. In this study, poly(styrene-co-methylmethacrylate) (P(S-MMA)) having intramolecular repulsion caused by positive interaction between styrene and MMA and poly(styrene-co-ethylmethacrylate) (P(S-EMA)) and poly(styrene-co-cyclohexylmethacrylate) (P(S-CHMA)) having intramolecular attraction caused by negative interaction between styrene and methacrylate were blended with tetramethyl polycarbonate (TMPC). The phase behavior of blends was examined as a function of copolymer composition and blend composition. TMPC formed miscible blends with styrenic copolymers containing less than certain amount of methacrylate. The phase separation temperature of TMPC blends with copolymer such as P(S-MMA) and P(S-EMA), first increases with methacrylate content, goes through a maximum and then decreases just prior to the limiting content of methacrylate for miscibility, while that of TMPC blends with P(S-CHMA) always decreases. The calculated interaction energy for TMPC-P(S-EMA) pair is negative and monotonically increases with EMA content of the copolymer. Such behavior contradicted the general notion that systems with more favorable energetic interactions have higher LCST. The detailed inspection of the lattice-fluid theory related to the phase behavior was performed to explain such behavior.


intramolecular interactions styrene-methacrylate copolymers TMPC LCST-type phase behavior equation-of-state effects interaction energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D. R. Paul, D. J. Walsh, and J. S. Higgins,Polymer Blends and Mixtures, A. Maconnachie, Ed., NATO ASI Series E, Applied Science, No. 89, Martinus Nijoff Publishers, Dorrecht, Netherlands, 1985, pp 1.Google Scholar
  2. (2).
    J. E. Harris, D. R. Paul, and J. W. Barlow,Polym. Eng. Sci.,23, 676 (1983).CrossRefGoogle Scholar
  3. (3).
    T. K. Kwei, T. Nishi, and R. F. Rorets,Macromolecules,7, 667 (1974).CrossRefGoogle Scholar
  4. (4).
    O. Olabisi,Macromolecules,8, 316 (1975).CrossRefGoogle Scholar
  5. (5).
    C. K. Kim and D. R. Paul,Polymer,33, 2089 (1992).CrossRefGoogle Scholar
  6. (6).
    C. K. Kim and D. R. Paul,Polymer,33, 4929 (1992).CrossRefGoogle Scholar
  7. (7).
    K. E. Min and D. R. Paul,Macromolecules,20, 2828 (1987).CrossRefGoogle Scholar
  8. (8).
    T. P. Russell,Macromolecules,26, 5819 (1993).CrossRefGoogle Scholar
  9. (9).
    T. A. Callaghan and D. R. Paul,Macromolecules,26, 2439 (1993).CrossRefGoogle Scholar
  10. (10).
    P. J. Flory,Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, 1953, Chapter 12.Google Scholar
  11. (11).
    I. C. Sanchez,Encyclopedia of Physical Science and Technology, Academic Press Academic Press, New York, 1987, Vol. XI, pp 1.Google Scholar
  12. (12).
    W. Guo and J. S. Higgins,Polymer,31, 699 (1990).CrossRefGoogle Scholar
  13. (13).
    A. F. Yee and M. A. Maxwell,J. Macromol. Sci.-Phys.,17, 543 (1980).CrossRefGoogle Scholar
  14. (14).
    M. H. Kim, J. H. Kim, C. K. Kim, and Y. S. Kang,J. Polym. Sci.: Polym. Phys. Ed.,37, 2950 (1999).CrossRefGoogle Scholar
  15. (15).
    J. H. Kim, D. S. Park, and C. K. Kim,J. Polym. Sci.: Polym. Phys. Ed.,38, 2666 (2000).CrossRefGoogle Scholar
  16. (16).
    A. C. Fernandes, J. W. Barlow, and D. R. Paul,Polymer,27, 1789 (1986).Google Scholar
  17. (17).
    S. Kim and J. Liu,Korea Polymer Journal,9(3), 129 (2001)Google Scholar
  18. (18).
    I. C. Sanchez and R. H. Lacombe,J. Phys. Chem.,80, 2568 (1976).CrossRefGoogle Scholar
  19. (19).
    I. C. Sanchez and R. H. Lacombe,J. Phys. Chem.,80, 2358 (1976).CrossRefGoogle Scholar
  20. (20).
    I. C. Sanchez and R. H. Lacombe,Macromolecules,11, 1145 (1978).CrossRefGoogle Scholar
  21. (21).
    D. R. Paul and J. W. Barlow,Polymer,25, 487 (1984).CrossRefGoogle Scholar
  22. (22).
    R. P. Kambour, T. J. Bendler, and R. C. Bopp,Macromolecules,16, 1827 (1983).CrossRefGoogle Scholar
  23. (23).
    G. ten Brinke, F. E. Karasz, and W. J. Macknight,Macromolecules,16, 1827 (1983).CrossRefGoogle Scholar
  24. (24).
    M. B. Ko,Korea Polymer Journal,8(4), 186 (2000).Google Scholar
  25. (25).
    H. Kim, J. Kim, and J. Lee,Korea Polymer Journal,9(3), 150 (2001).Google Scholar
  26. (26).
    P. A. Rodgers,J. Appl. Polym. Sci.,18, 1061 (1993).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2002

Authors and Affiliations

  • M. J. Kim
    • 1
  • J. E. Yoo
    • 1
  • H. K. Choi
    • 1
  • C. K. Kim
    • 1
  1. 1.Department of Chemical EngineeringChung-Ang UniversitySeoulKorea

Personalised recommendations