Advertisement

Macromolecular Research

, Volume 10, Issue 2, pp 60–66 | Cite as

Polyetherimide/dicyanate semi-interpenetrating polymer networks having a morphology spectrum

  • Yu-Seung Kim
  • Hyun-Sung Min
  • Sung-Chul Kim
Article

Abstract

The morphology, dynamic mechanical behavior and fracture behavior of polyetherimide (PEI)/dicyanate semi-interpenetrating polymer networks (semi-IPNs) with a morphology spectrum were analyzed. To obtain the morphology spectrum, we dispersed PEI particles in the precured dicyanate resin containing 300 ppm of zinc stearate catalyst. The semi-IPNs exhibited a morphology spectrum, which consisted of nodular spinodal structure, dualphase morphology, and sea-island type morphology, in the radial direction of each dispersed PEI particle due to the concentration gradient developed by restricted dissolution and diffusion of the PEI particles during the curing process of the dicyanate resin. Analysis of the dynamic mechanical data obtained by the semi-IPNs demonstrated that the transition of the PEI-rich phase was shifted toward higher temperature as well as becoming broader because of the gradient structure. The semi-IPNs with the morphology spectrum showed improved fracture energy of 0.3 kJ/m2, which was 1.4 times that of the IPNs having sea-island type morphology. It was found that the partially introduced nodular structure played a crucial role in the enhancement of the fracture resistance of the semi-IPNs.

Keywords

dicyanate toughening morphology semi-IPNs gradient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. C. Chen, D. J. Hourston, and W. B. Sun,Eur. Polym. J.,28, 1471 (1992).CrossRefGoogle Scholar
  2. (2).
    A. J. MacKinnon, S. D. Jenkins, P. T. McGrail, and R. A. Pethrick,Macromolecules,25, 3492 (1992).CrossRefGoogle Scholar
  3. (3).
    B. G. Min, J. H. Hodgkin, and Z. H. Stachurski,J. Appl. Polym. Sci.,50, 1065 (1993).CrossRefGoogle Scholar
  4. (4).
    P. A. Oyanguren, M. J. Galante, K. Andromaque, P. M. Frontini, and R. J. J. Williams,Polymer,40, 5249 (1999).CrossRefGoogle Scholar
  5. (5).
    C. B. Bucknall and A. H. Gilbert,Polymer,30, 213 (1989).CrossRefGoogle Scholar
  6. (6).
    E. M. Woo, D. A. Shimp, and J. C. Seferis,Polymer,35, 1658 (1994).CrossRefGoogle Scholar
  7. (7).
    B. K. Lee and S. C. Kim,Polym. Adv. Technol.,6, 402 (1995).CrossRefGoogle Scholar
  8. (8).
    J. W. Park and S. C. Kim,IPNs around the world, S. C. Kim and L. H. Sperling, Eds., John Wiley & Sons, Chichester, 1997, Chap. 2.Google Scholar
  9. (9).
    J. L. Hedrick, I. Yilgor, M. Jurek, J. C. Hedrick, G. L. Wilkes, and J. E. McGrath,Polymer,32, 2020 (1991).CrossRefGoogle Scholar
  10. (10).
    B. K. Lee, Ph. D thesis, KAIST, Taejon, Korea (1995).Google Scholar
  11. (11).
    T. H. Yoon, D. B. Priddy, G. D. Lyle, and J. E. McGrath,Macromol. Symp.,98, 673 (1995).CrossRefGoogle Scholar
  12. (12).
    D. Chen, J. P. Pascault, H. Sautereau, R. A. Ruseckaite, and R. J. J. Williams,Polym. Int.,33, 253 (1994).CrossRefGoogle Scholar
  13. (13).
    Y. S. Kim and S. C. Kim,Macromolecules,32, 2334 (1999).CrossRefGoogle Scholar
  14. (14).
    H. S. Min and S. C. Kim,Polym. Bull.,42, 221 (1999).CrossRefGoogle Scholar
  15. (15).
    J. W. Hwang, K. Cho, C. E. Park, and W. Huh,J. Appl. Polym. Sci.,74, 33 (1999).CrossRefGoogle Scholar
  16. (16).
    E. M. Woo, C. C. Su, J. F. Kuo, and J. C. Seferis,Macromolecules,27, 5291 (1994).CrossRefGoogle Scholar
  17. (17).
    Y. S. Kim, H. S. Min, W. J. Choi, and S. C. Kim,Polym. Eng. Sci.,40, 665 (2000).CrossRefGoogle Scholar
  18. (18).
    K. Matyjaszewski, D. Greszta, and T. Pakula,ACS Polym. Preprint,38, 707 (1997).Google Scholar
  19. (19).
    R. E. Robertson and V. E. Mindroiu,Polym. Eng. Sci.,27, 55 (1987).CrossRefGoogle Scholar
  20. (20).
    S. W. Koh, J. K. Kim, and Y. W. Mai,Polymer,34, 3446 (1993).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2002

Authors and Affiliations

  • Yu-Seung Kim
    • 1
  • Hyun-Sung Min
    • 2
  • Sung-Chul Kim
    • 3
  1. 1.Department of ChemistryVirginia Tech.BlacksburgUSA
  2. 2.LG Chemical Ltd. Research ParkTaejonKorea
  3. 3.Center for Advanced Functional PolymersKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations