Advertisement

Macromolecular Research

, Volume 10, Issue 3, pp 150–157 | Cite as

Effect of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface with different wettability on fibroblast behavior

  • Sang Jin Lee
  • Young Moo Lee
  • Gilson Khang
  • In Young Kim
  • Bong Lee
  • Hai Bang Lee
Article

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30∼40 degree, increased hydrophilicity, due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [3H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettability of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.

Keywords

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) corona discharge chloric acid mixture solution wettability NIH/3T3 fibroblasts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Gogolewski, M. Jovanoic, S. M. Perren, J. G. Dillon, and M. K. Hughes,J. Biomed. Mater. Res.,27, 1135 (1993).CrossRefGoogle Scholar
  2. (2).
    S. Akhtar and C. W. Pouton,Drug News Perspectives,2, 89 (1989).Google Scholar
  3. (3).
    K. Juni and M. Nakano,CRC Crit. Rev. Therap. Drug Carrier Syst.,3, 209 (1987).Google Scholar
  4. (4).
    S. J. Lee, G. Khang, J. H. Lee, Y. M. Lee, and H. B. Lee,Polymer(Korea),24(6), 877 (2000).Google Scholar
  5. (5).
    G. Khang, S. J. Lee, J. H. Jeon, J. H. Lee, and H. B. Lee,Polymer(Korea),24(6), 869 (2000).Google Scholar
  6. (6).
    G. Khang, S. J. Lee, J. H. Lee, and H. B. Lee,Korea Polym. J.,7, 102 (1999).Google Scholar
  7. (7).
    J. M. Schakenraad, H. J. Busscher, C. H. R. Wildevuur, and J. Arends,J. Biomed. Mater. Res.,20, 773 (1986).CrossRefGoogle Scholar
  8. (8).
    P. B. Van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers, and W. G. Van Aken,Biomaterials,6, 403 (1985).CrossRefGoogle Scholar
  9. (9).
    Y. Tamada and Y. Ikada,J. Colloid Interface Sci.,155, 334 (1993).CrossRefGoogle Scholar
  10. (10).
    P. B. Van Wachem, A. H. Hogt, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers, and W. G. Van Aken,Biomaterials,8, 323 (1987).CrossRefGoogle Scholar
  11. (11).
    D. E. Gregonis, R. Hsu, D. E. Buerger, L. M. Smith, and J. D. Andrade, inMacromolecular Solutions, R. B. Seymoor and D. A. Stahl, Eds., Pergamon, New York, 1982, pp 120.Google Scholar
  12. (12).
    D. L. Coleman, D. E. Gregonis, and J. D. Andrade,J. Biomed. Mater. Res.,16, 381 (1982).CrossRefGoogle Scholar
  13. (13).
    T. A. Horbett, M. B. Schway, and B. D. Ratner,J. Colloid Interface Sci.,104, 28 (1985).CrossRefGoogle Scholar
  14. (14).
    D. L. Walker, M. D. Gregonis, and W. M. Richert,J. Colloid Interface Sci.,157, 41 (1993).CrossRefGoogle Scholar
  15. (15).
    M. J. Lydon, T. W. Minett, and B. J. Tighe,Biomerials,6, 396 (1985).Google Scholar
  16. (16).
    J. H. Lee, H. Kim, G. Khang, H. B. Lee, and M. S. Jhon,J. Colloid Interf. Sci.,152, 563 (1992).CrossRefGoogle Scholar
  17. (17).
    H. B. Lee and J. H. Lee,Biocompatibility of solid substrates based on surface wettability, inEncyclopedic Handbook of Biomaterials and Bioengineering: Part A. Materials, D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwartz, Eds., Marcel Dekker, New York, 1995. Vol. 1, pp 371–398.Google Scholar
  18. (18).
    J. H. Lee and H. B. Lee,J. Biomater. Sci., Polym. Edn.,4, 467 (1993).Google Scholar
  19. (19).
    B. J. Jeong, J. H. Lee, and H. B. Lee,J. Colloid Interf. Sci.,178, 757 (1996).CrossRefGoogle Scholar
  20. (20).
    J. H. Lee, B. J. Jeong, and H. B. Lee,J. Biomed. Mater. Res.,34, 105 (1997).CrossRefGoogle Scholar
  21. (21).
    J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee,Makromol. Chem., Macromol. Symp.,118, 571 (1997).Google Scholar
  22. (22).
    G. Khang, J. W. Lee, J. H. Jeon, J. H. Lee, and H. B. Lee,Biomaterials Res.,1, 1 (1997).Google Scholar
  23. (23).
    J. H. Lee, J. W. Lee, G. Khang, and H. B. Lee,Biomaterials,18, 351 (1997).CrossRefGoogle Scholar
  24. (24).
    J. H. Lee and H. B. Lee,J. Biomed. Mater. Res.,41, 304 (1998).CrossRefGoogle Scholar
  25. (25).
    J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee,J. Biomed. Mater. Res.,40, 180 (1998).CrossRefGoogle Scholar
  26. (26).
    Y. Iwasaki, K. Ishihara, N. Nakabayashi, G. Khang, J. H. Jeon, J. W. Lee, and H. B. Lee,J. Biomater. Sci., Polym. Edn.,9, 801 (1998).CrossRefGoogle Scholar
  27. (27).
    J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee,J. Colloid Interf. Sci.,205, 323 (1998).CrossRefGoogle Scholar
  28. (28).
    G. Khang, J. H. Jeon, J. C. Cho, J. M. Rhee, and H. B. Lee,Polymer(Korea),23, 861 (1999).Google Scholar
  29. (29).
    G. Khang, S. J. Lee, J. H. Jeon, J. H. Lee, and H. B. Lee,Polymer(Korea),24, 869 (2000).Google Scholar
  30. (30).
    G. Khang, C. S. Park, J. M. Rhee, S. J. Lee, Y. M. Lee, M. K. Choi, I. Lee, and H. B. Lee,Korea Polym. J.,9, 267 (2001).Google Scholar
  31. (31).
    G. Khang, J.-H. Choee, J. M. Rhee, and H. B. Lee,J. Appl. Polym. Sci., in press (2001).Google Scholar
  32. (32).
    J. H. Lee, S. J. Lee, G. Khang, and H. B. Lee,J. Colloid Interf. Sci.,230, 84 (2000).CrossRefGoogle Scholar
  33. (33).
    J. H. Lee, H. W. Jung, I. K. Kang, and H. B. Lee,Biomaterials,15, 705 (1994).CrossRefGoogle Scholar
  34. (34).
    P. B. van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers and W. G. van Aken,Biomaterials,6, 403 (1985).CrossRefGoogle Scholar
  35. (35).
    P. B. van Wachem, A. H. Hogt and T. Beugeling,Biomaterials,8, 323 (1987).CrossRefGoogle Scholar
  36. (36).
    Y. Tamada and Y. Ikada, inPolymers in Medicine II, E. Cheillin, P. Giusti, C. Migliaresl, and L. Nicolas, Eds., Plenum Press, New York, 1986, pp 101.Google Scholar
  37. (37).
    Y. Tamada and Y. Ikada,J. Colloid Interf. Sci.,155, 334 (1993).CrossRefGoogle Scholar
  38. (38).
    Y. Tamada and Y. Ikada,J. Biomed. Mater. Res.,28, 783 (1994).CrossRefGoogle Scholar
  39. (39).
    G. Khang,. J. H. Lee, J. M. Rhee, and H. B. Lee,Korea Polym. J.,8, 276 (2000).Google Scholar
  40. (40).
    G. Khang, S. J. Lee, Y. M. Lee, J. H. Lee, and H. B. Lee,Korea Polym. J.,8, 179 (2000).Google Scholar
  41. (41).
    J. H. Lee, D. K. Kim, G. Khang, and J. S. Lee,Biomaterials Res.,2, 8 (1998).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2002

Authors and Affiliations

  • Sang Jin Lee
    • 1
  • Young Moo Lee
    • 1
  • Gilson Khang
    • 2
  • In Young Kim
    • 3
  • Bong Lee
    • 3
  • Hai Bang Lee
    • 4
  1. 1.Department of Industrial ChemistryHanyang UniversitySeoulKorea
  2. 2.Department of Polymer Science and TechnologyChonbuk National UniversityChonjuKorea
  3. 3.Department of Polymer EngineeringBukyung National UniversityBusanKorea
  4. 4.Biomaterials LaboratoryKorea Research Institute of Chemical TechnologyDaejonKorea

Personalised recommendations