Various biomarker and bioindicator responses in muddy loach (Misgurnus anguillicadatus) exposed to endosulfan for 21 days

  • Seok-Ki Min
  • Ja-Hyun Kim
  • Sooyeon Kim
  • Byung-Seok Kim
  • Dong-Hyuk Yeom
Original Paper


To evaluate the effects for endocrine disruption and the toxic effects on the biomarkers and bioindicators the muddy loach (Misgurnus anguillicadatus) was exposed to endosulfan using a continuous flow-through system for a period of 21 days. This study evaluated the effect of endosulfan using the biomarkers (VTG, AChE, EROD, Comet) and bioindicators (CF, GSI, LSI) should be deleted because it is logically redundant. Male muddy loach exposed to the 2.0 μg/L of endosulfan showed a steep increase of VTG rate compare to the control groups (p<0.05). Also, AChE and EROD levels were significantly elevated at higher concentrations of endosulfan (p<0.05). DNA damage was induced in a time- and dose-dependent manner, and increased significantly compared to control groups (p<0.05). On the other hand, CF, GSI and LSI presented no significant differences between the male and female in both control and treatment groups (p>0.05). In conclusion, endosuflan caused vitellogenesis, cytochrome p450 induction, AChE damage and DNA damage in the muddy loach (Misgurnus anguillicaudatus), indicating that those effects should be considered in the case of the EDCs risk aβeβment of the endosulfan especially in benthic freshwater fish. In addition, those biomarkers can be used for the monitoring of endosulfan contamination in aquatic ecosystems.


Endosulfan VTG AChE EROD Comet Bioindicators Muddy Loach (Misgurnus anguillicadatus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleβandra, al. Endocrine disrupting chemicals (EDC) with (anti)estrogenic and (anti)androgenic modes of action affecting reproductive biology of Xenopus laevis: II. Effects on gonad histomorphology.Comp. Biochem. Physiol. 147 (Part C), 241–251 (2008).Google Scholar
  2. 2.
    Mills, L. J. & Clinton, C. Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment impacting fish population?Sci. Total Environ. 343, 1–34 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    Vos, J. al. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation.Crit. Rev. Toxicol. 30, 71–133 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    Schoeters, G., Den Hond, E., Dhooge, W., van Larebeke, N. & Leijs, M. Endocrin disruptors and abnormalities of pubertal development.Basic & Clin. Pharmacol & Toxicol. 102, 168–175 (2008).CrossRefGoogle Scholar
  5. 5.
    Gray, L. E. al. Endocrine screening methods workshop report: detection of estrogenic and androgenic hormonal and antihormonal activity for chemicals that act via receptor or steroidogenic enzyme mechanisms.Reprod. Toxicol. 11, 719–750 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    McKinlay, R., Plant, J. A., Bell, J. N. B. & Voulvoulis, N. Endocrine disrupting pesticides: Implications for risk aβeβment.Environ. Int. 34, 168–183 (2008).PubMedCrossRefGoogle Scholar
  7. 7.
    Naqvi, S. M. & Vaishnavi, C. Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals.Comp. Biochem. Physiol. 105C, 347–361 (1982).Google Scholar
  8. 8.
    Pandey, al. Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch: 1. Protection against lipid peroxidation in liver by copper preexposure.Arch. Environ. Contam. Toxicol. 41, 345–352 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    Wan, M. T., Kuo, J. N. & Pasternak, J. Residues of endosulfan and other selected organochlorine pesticides in farm areas of the Low Fraser Valley. British Columbia, Canada.J. Environ. Qual. 34, 1186–1193 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    Heppel, S. al. Universal aβay of vitellogenin as a biomarker for environmental estrogen.Environ. Health Perspect. 103, 9–15 (1995).CrossRefGoogle Scholar
  11. 11.
    Kirby, M. al. Ethoxyresorufin-O-deethylase (EROD) and vitellogenin (VTG) in flounder (Platichthys flesus): System interaction, croβtalk and implications for monitoring.Aquat. Toxicol. 81, 233–244 (2007).PubMedCrossRefGoogle Scholar
  12. 12.
    Beliaeff, B. & Burgeot, T. Intergrated biomarker response: A useful tool for ecological risk aβeβment.Environ. Toxicol. Chem. 21, 1316–1322 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    Capkin, E., Altinok, I. & Karahan, S. Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout.Chemosphere 64, 1793–1800 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    Yuanxiang, J., Rujia, C., Weiping, L. & Zhengwei, F. Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio rerio).Fish Shellfish Immun.28, 854–861 (2010).CrossRefGoogle Scholar
  15. 15.
    Kim, I. S. inIllustrated encyclopedia of fauna & flora of Korea fishes. (Freshwater Fishes, Ministry of Education, Korea, 1997).Google Scholar
  16. 16.
    Lv, X., Shao, J., Song, M., Zhou, Q. & Jiang, G. Vitellogenic effects of 17β-estradiol in male Chinese loach (Misgurnus anguillicaudatus) Comp.Biochem. Physiol. 143 (Part C), 127–133 (2006).CrossRefGoogle Scholar
  17. 17.
    Bae, I. al. Effect of endosulfan and red ginseng on LDH isozymes of liver and kidney in goldfish.Korean J Limnol. 30, 29–35 (1997).Google Scholar
  18. 18.
    Kim, W. al. Responses of various biomarkers in common carp (Cyprinus carpio) exposed to benzo[K] fluoranthene.Korean J. Limnol. 41, 331–337 (2008).Google Scholar
  19. 19.
    Ellman, G. L., Curtney, K. D., Andres Jr., V. & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 7, 88–95 (1961).PubMedCrossRefGoogle Scholar
  20. 20.
    Hiran, al. Effect of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish.Environ. Res. 91, 157–162 (2003).CrossRefGoogle Scholar
  21. 21.
    Mor, F. Ozlem, O. Endosulfan-induced neurotoxicity and serum acetylcholinesterase inhibition in rabbits: The protective effect of Vit C.Pestic. Biochem. Phys. 96, 108–112 (2010).CrossRefGoogle Scholar
  22. 22.
    Sturm, al. Inhibition of rainbow trout acetylcholinesterase by aqueous and suspended particle-aβociated organophosphorous insecticides.Chemosphere 68, 605–612 (2007).PubMedCrossRefGoogle Scholar
  23. 23.
    Paul, V. & Balasubramaniam, E. Effects of single and repeated administration of endosulfan on behavior and its interaction with centrally acting drugs in experimental animals: a mini review, Environ. Toxicol. Pharmacol.3, 51–157 (1997).Google Scholar
  24. 24.
    Coimbra, A. al. Nile tilapia (Oreochromis niloticus), liver morphology, CYP1A activity and thyroid hormones after Endosulfan dietary exposure.Pestic. Biochem. Physiol.89, 230–236 (2007).CrossRefGoogle Scholar
  25. 25.
    Braunbeck, T. & Appelbaum, S. Ultrastructural alterations in the liver and intestine of carp Cyprinus carpio induced orally by ultra-low doses of endosulfan.Dis. Aquat. Organ. 36, 183–200 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    Yavuz, Y., Yurumez, Y., Kucuker, H., Ela, Y. & Yuksel, S. Two cases of acute endosulfan toxicity.Clin. Toxicol. 45, 530–532 (2007).CrossRefGoogle Scholar
  27. 27.
    Tellez-Bañuelos, M. C., Santerre, A., Casas-Solis, J., Bravo-Cuellar, A. & Zaitseva, G. Oxidative streβ in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan.Fish Shellfish Immunol. 27, 105–111 (2009).PubMedCrossRefGoogle Scholar
  28. 28.
    Ren, N. Q., Zhang, X. D., Zhou, G. H. & Chen, S. J. Induced apoptosis and mechanism of endosulfan in mouse germ cells.China. Environ. Sci.: Zhong Guo Huan Jing Ke Xue 29, 386–390 (2008).Google Scholar
  29. 29.
    Glover, C. al. Aβesing the sensitivity of Atlantic salmon (Salmo salar) to dietary endosuflan exposure using tiβue biochemistry and histology.Aquat. Toxicol. 84, 346–355 (2007).PubMedCrossRefGoogle Scholar
  30. 30.
    Lee, R. F. & Steinert, S. Use of the single cell gel electrophoresis/ comet aβay for detecting DNA damage in aquatic (marine and freshwater) animals.Mutat. Res. 544, 43–64 (2003).PubMedCrossRefGoogle Scholar
  31. 31.
    Bajpayee, al. DNA damage and mutagenicity induced by endosulfan and its metabolites.Environ. Mol. Mutagen. 47, 682–692 (2006).PubMedCrossRefGoogle Scholar
  32. 32.
    Larsen, D. A., Beckman, B. R. & Dickhoff, W. W. The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (Insulin, Insulin-like Growth factor-I, and Thyroxine) of Coho Salmon, Oncorhynchus kisutch.Gen. Comp. Endocr. 123, 308–323 (2001).PubMedCrossRefGoogle Scholar
  33. 33.
    Ham, K. D., Adams, S. M. & Peterson, M. J. Application of multiple bioindicators to differentiate spatial and temporal variability from the effects of contaminant exposure on fish.Ecotox. Environ. Safe. 37, 53–61 (1997).CrossRefGoogle Scholar
  34. 34.
    34. US Geological Survey (USGS). Biomonitoring of Environmental Status and Trends (BEST) Program: selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems. USGS/BRD/ITR-2000-005 (2000).Google Scholar
  35. 35.
    Adams, S. M. & McLean, R. B. Estimation of largemouth baβ, Micropterus salmoides Lacepede, growth using the liver somatic index and physiological variables.J. Fish Biology 26, 111–126 (1985).CrossRefGoogle Scholar
  36. 36.
    Hinck, J. al. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries.Sci. Total Environ. 378, 376–402 (2007).PubMedCrossRefGoogle Scholar
  37. 37.
    Jung, J. al. Biomarker responses in caged rockfish (Sebastes schlegeli) from Masan Bay and Haegeumgang, South Korea.Mar. Pollut. Bull. 57, 599–606 (2008).PubMedCrossRefGoogle Scholar
  38. 38.
    Jung, J. H., Addison, R. F. & Shim, W. J. Characterization of cholinesterases in marbled sole, Limanda yokohamae, and their inhibition in vitro by the fungicide iprobenfos.Mar. Environ. Res. 63, 471–478 (2007).PubMedCrossRefGoogle Scholar
  39. 39.
    Kennedy, S. W. & Jones, S. P. Simultaneous measurement of cytochrome P450a! catalytic activity and total protein concentration with a flrorescence plate reader.Anal. Biochem. 222, 217–223 (1994).PubMedCrossRefGoogle Scholar
  40. 40.
    Singh, N. al. A simple technique for quantification of low levels of DNA damage in individual cells.Exp. Cell Res. 175, 184–191 (1988).PubMedCrossRefGoogle Scholar
  41. 41.
    Kim, G. B., Lee, R. F. & Maruya, K. A. Application of single cell gel electrophoresis to detect DNA single strand breaks in DNA of fish blood cell.J. Kor. Fish Soc. 36, 346–351 (2003)Google Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2010

Authors and Affiliations

  • Seok-Ki Min
    • 1
  • Ja-Hyun Kim
    • 1
  • Sooyeon Kim
    • 1
  • Byung-Seok Kim
    • 2
  • Dong-Hyuk Yeom
    • 1
  1. 1.Environmental Research CenterKorea Institute of ToxicologyDaejeonKorea
  2. 2.Department of Crop Life Safety, National Institute of Agricultural Science and TechnologyRural Development AdministrationSuwonKorea

Personalised recommendations