in vitromodels, endpoints and assessment methods for the measurement of cytotoxicity

  • Sanjeev Kumar Mahto
  • Prakash Chandra
  • Seog Woo Rhee
Mini Review


Cells respond rapidly to toxic substances by altering the morphology, growth, behavior, and biochemical processes controlling basic cell vitrocytotoxicity analysis, an alternative to animal-based testing, is an important tool to specifically screen the chemicals and form a comprehensive and reliable toxicological data useful for predicting the toxic effects on humans. Consequently, the increasing demand of cellbased screening system led to the development of various innovativein vitromodel systems, novel endpoints, variety of cytotoxicity assays, and advanced assessment or detection methods. Although the cellbased screening has come to a very advanced level capable of providing adequate information on kinetic progression of cell death and dynamic interaction between cells and toxicants, the certain limitations of the existing model systems and methods render the results with high variability and questionable relevance. Therefore, the multiplexed assay approach based on multiple endpoints should be preferred for the evaluation of toxicity of a chemical and to estimate the actual cause and mechanism of cell death. In addition, the existingin vitro cytotoxicity studies provide the collection of toxicological data useful for the determination of acute effects of a substance. These data don’t well suit to analyze the chronic effects of a chemical. Therefore, there is a strong need to improve the existing model systems and methods which could be applicable for the measurement of the time-course of molecular changes and complex sequences of biochemical events involved in chronic toxicityin vivo.


Cytotoxicity Assay Normal Human Lung Fibroblast Cytotoxicity Analysis Anaplastic Thyroid Cancer Cell Cell Death Progression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eisenbrand, al. Methods ofin vitro toxicology.Food Chem. Toxicol. 40, 193–236 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F. & Ebner, R. The use of 3-D cultures for high-throughput screening: The multicellular spheroid model.J. Biomol. Screen. 9, 273–285 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    Zucco, F., Angelis, I. D., Testai, E. & Stammati, A. Toxicology investigations with cell culture systems: 20 years after.Toxicol. In Vitro 18, 153–163 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    Sung, J. H. & Shuler, M. L.In vitro microscale systems for systematic drug toxicity study.Bioprocess Biosyst. Eng. 33, 5–19 (2010).PubMedCrossRefGoogle Scholar
  5. 5.
    Ekwall, B., Silano, V., Paganuzzi-Stammati, A. & Zucco, F.Toxicity Tests with Mammalian Cell Cultures (eds Bourdeau, al.) Chapter 7 (John Wiley & Sons Ltd 1990).Google Scholar
  6. 6.
    Kim, J. B., Stein, R. & O’Hare, M. J. Three-dimensionalin vitro tissue culture models of breast cancer-a review.Breast Cancer Res. Treat. 85, 281–291 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    Burguera, E. F., Bitar, M. & Bruinink, A. Novelin vitro co-culture methodology to investigate heterotypic cell-cell interactions,Eur. Cell Mater. 19, 166–179 (2010).PubMedGoogle Scholar
  8. 8.
    Goodman, T. T., Ng, C. P. & Pun, S. H. 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers.Bioconjug. Chem. 19, 1951–1959 (2008).PubMedCrossRefGoogle Scholar
  9. 9.
    Cell culture system &in vitro toxicity testing. Technical report no. 4 of the Johns Hopkins Center for Alternatives to Animal Testing (CAAT): Technical workshop of June 13–15, 1990.Cytotechnology 8, 129–176 (1992).Google Scholar
  10. 10.
    Kitamura, K., Tokito, Y., Dekura, E. & Kawai, Y. Technical report, Application of rat precision-cut liver slices for toxicity assessmentin vitro.J. Toxicolo. Pathol. 12, 71–75 (1999).CrossRefGoogle Scholar
  11. 11.
    Oliver, M. H., Harrison, N. K, Bishop, J. E., Cole, P. J. & Laurent, G. J. A rapid and convenient assay for counting cells cultured in microwell plates: Application for assessment of growth factors.J. Cell Sci. 92, 513–518 (1989).PubMedGoogle Scholar
  12. 12.
    Al-Nasiry, S., Geusens, N., Hanssens, M., Luyten, C. & Pijnenborg, R. The use of alamar blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells.Hum. Reprod. 1–6 (2007).Google Scholar
  13. 13.
    Patel, R. M. & Patel, N. vitro cytotoxicity screening of coumarin compounds on Hep2 cancer cell line.Int. J. Pharm. Res. 2, 88–99 (2010).Google Scholar
  14. 14.
    Breier, J. M., Radio, N. M., Mundy, W. R. & Shafer, T. J. Development of a high-throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells.Toxicol. Sci. 105, 119–133 (2008).PubMedCrossRefGoogle Scholar
  15. 15.
    Huschtscha, L. I., Lucibello, F. C. & Bodmer, W. F. A Rapid micro method for counting cells “in situ” using a fluorogenic alkaline phosphatase enzyme assay.In Vitro Cell. Dev. Biol. 25, 105–108 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    Lecoeur, H., Fevrier, M., Garcia, S., Riviere, Y. & Gougeon, M. L. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity.J. Immunol. Methods 253, 177–187 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, C. S. & Gee, K. R. Redox-dependent trafficking of 2,3,4,5,6-pentafluorodihydrotetramethylrosamine, a novel fluorogenic indicator of cellular oxidative activity.Free Radic. Biol. Med. 28, 1266–1278 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    Bird, C. al. Cationic sites on granzyme B contribute to cytotoxicity by promoting its uptake into target cells.Mol. Cell Biol. 25, 7854–7867 (2005).PubMedCrossRefGoogle Scholar
  19. 19.
    Reddivari, L., Vanamala, J., Chintharlapalli, S., Safe, S. H. & Miller Jr, J. C. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspaseindependent pathways.Carcinogenesis 28, 2227–2235 (2007).PubMedCrossRefGoogle Scholar
  20. 20.
    Pushkarev, V. al. Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells.Endocrinology 145, 3143–3152 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    Castafio, A. & Tarazona, J. V. ATP assay on cell monolayers as an index of cytotoxicityEnviron. Contam. Toxicol. 53, 309–316 (1994).Google Scholar
  22. 22.
    Venkatesh, al. Chemical genetics to identify NFAT inhibitors: Potential of targeting calcium mobilization in immunosuppression.Proc. Natl. Acad. Sci. USA 101, 8969–8974 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    Lee, D. al. 6-Hydroxydopamine induces cystatin C-mediated cysteine protease suppression and cathepsin D activation.Neurochem. Int. 50, 607–618 (2007).PubMedCrossRefGoogle Scholar
  24. 24.
    Leira, F., Louzao, M. C., Vieites, J. M., Botana, L. M. & Vieytes, M. R. Fluorescent microplate cell assay to measure uptake and metabolism of glucose in normal human lung fibroblasts.Toxicol. In vitro 16, 267–273 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    Mueller, H., Kassack, M. U. & Wiese, M. Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines.J. Biomol. Screen. 9, 506–515 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    Tominaga, al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay.Anal. Commun. 36, 47–50 (1999).CrossRefGoogle Scholar
  27. 27.
    Pauwels, al. Comparison of the sulforhodamine B assay and the clonogenic assay forin vitro chemoradiation studies.Cancer Chemother. Pharmacol. 51, 221–226 (2003).PubMedGoogle Scholar
  28. 28.
    Lobner, D. Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis?J. Neurosci. Meth. 96, 147–152 (2000).CrossRefGoogle Scholar
  29. 29.
    Zhang, S. Z., Lipsky, M. M., Trump, B. F. & HSU, I. C. Neutral red (NR) assay for cell viability and xenobiotic-induced cytotoxicity in primary cultures of human and rat hepatocytes.Cell Biol. Toxicol. 6, 219–234 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    McMillian, M. al. An improved resazurin-based cytotoxicity assay for hepatic cells.Cell Biol. Toxicol. 18, 157–173 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    Slater, K. Cytotoxicity tests for high-throughput drug discovery.Curr. Opin. Biotechnol. 12, 70–74 (2001).PubMedCrossRefGoogle Scholar
  32. 32.
    Ceriotti, al. Real-time assessment of cytotoxicity by impedance measurement on a 96-well plate.Sens. Actuators B 123, 769–778 (2007).CrossRefGoogle Scholar
  33. 33.
    Jahnke, H. al. An impedimetric microelectrodebased array sensor for label-free detection of tau hyperphosphorylation in human cells.Lab Chip 9, 1422–1428 (2009).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2010

Authors and Affiliations

  • Sanjeev Kumar Mahto
    • 1
  • Prakash Chandra
    • 1
  • Seog Woo Rhee
    • 1
  1. 1.Department of Chemistry, College of Natural SciencesKongju National UniversityKongjuKorea

Personalised recommendations