Toxicology and Environmental Health Sciences

, Volume 1, Issue 3, pp 159–162 | Cite as

Synthesis and characterization of Rhodamine based Pb2+ selective fluorescence sensor



We have synthesized and characterized a new Rhodamine-based Pb2+ selective fluorescent sensor. The fluorescent Pb2+ sensor Rh2 was synthesized by reaction of Rhodamine B with 2-bromoethylamine followed by sodium azide in high yield. We found that fluorescent sensor Rh2 exhibits a good selectivity toward Pb2+ over other metal ions in chloroform solution. In the absence of Pb2+, fluorescent sensor Rh2 is colorless and non-fluorescent, whereas pink color and strong fluorescence observed upon the addition of Pb2+. Since Rhodamine-based fluorescent sensor Rh2 exhibited simultaneous colormetric and fluorescence changes upon the addition of Pb2+, implying possible applications in a variety of area such as environment monitoring and diagnostic analysis.


Fluorescent sensor Pb2+ sensor Environment monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koziar, J. C. & Cowan, D. O. Photochemical heavyatom effects.Acc Chem Res 11, 334–341 (1978).CrossRefGoogle Scholar
  2. 2.
    Martinez-Manez, R. & Sancenon, F. Fluorogenic and chromogenic chemosensors and reagents for anions.Chem Rev 103, 4419–4476 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    Nolan, E. M. & Lippard S. J. Tools and tactics for the optical detection of mercuric ion.Chem Rev 108, 3443–3480 (2008).PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang, al. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: New selective chemodosimeters for Hg(II) ion.Chem Commun 2161–2163 (2005).Google Scholar
  5. 5.
    Hennrich, G., Sonnenschein, H. & Resch-Genger, U. Redox switchable fluorescent probe selective for either Hg (II) or Cd (II) and Zn (II).J Am Chem Soc 121, 5073–5074 (1999).CrossRefGoogle Scholar
  6. 6.
    Tsien, R. Y. & Poenie, M. Fluorescence ratio imaging: A new window into intracellular ionic signaling.Trends in Biol Sci 11, 450–455 (1986).CrossRefGoogle Scholar
  7. 7.
    Li, J. & Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions.J Am Chem Soc 122, 10466–10467 (2000).CrossRefGoogle Scholar
  8. 8.
    Xiao, Y., Rowe, A. A. & Plaxco, K. W. Electrochemical detection of parts-per-billion lead via an electrodebound DNAzyme assembly.J Am Chem Soc 129, 262–263 (2007).PubMedCrossRefGoogle Scholar
  9. 9. Scholar
  10. 10.
    Shiraishi, Y., Sumiya, S., Kohno, Y. & Hirai, T. A Rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg2+.J Org Chem 73, 8571–8574 (2008)PubMedCrossRefGoogle Scholar
  11. 11.
    Anthoni, U., Christophersen, C., Nielsen, P., Puschl, A. & Schaumburg, K. Structure of red and orange fluorescein I.Struct Chem 3, 161–165 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2009

Authors and Affiliations

  1. 1.Department of Applied ChemistryKyung Hee UniversityYonginKorea

Personalised recommendations