Advertisement

European Journal of Clinical Pharmacology

, Volume 40, Supplement 1, pp S37–S40 | Cite as

Bezafibrate fails to directly modulate HMG-CoA reductase or LDL catabolism in human mononuclear cells

  • E. F. Stange
  • M. Frühholz
  • M. Osenbrügge
  • F. Reimann
  • H. Ditschuneit
Article

Summary

The effect of bezafibrate on HMG-CoA reductase, the key enzyme of cholesterol synthesis, and LDL metabolism was studied in human mononuclear cells. Bezafibrate at concentrations achieved during administration in patients did not suppress preformed reductase in mononuclear cells. Similarly, the drug was ineffective in regulating reductase when added to the medium of cultured cells. Also, the fibrate did not modulate the enzyme suppression mediated by LDL. At very high concentrations bezafibrate enhanced LDL binding, but both total cell association and degradation were unchanged. Thus, the previously observed decrease of HMG-CoA reductase activity in mononuclear cells of patients treated with fibrates is likely to be indirect and probably due to changes in LDL structure.

Keywords

Cholesterol synthesis 3-hydroxy-3-methyl-glutaryl CoA reductase mononuclear cells fibrate 

References

  1. 1.
    Vessby B, Lithell H, Hellsing K, Östlund-Lindqvist A-M, Gustafsson I-B, Boberg J, Ledermann H (1980) Effects of bezafibrate on the serum lipoprotein lipid and apolipoprotein composition, lipoprotein triglyceride removal capacity and the fatty acid composition of the plasma lipid esters. Atherosclerosis 37: 257–269PubMedCrossRefGoogle Scholar
  2. 2.
    Schneider A, Stange EF, Ditschuneit HH, Ditschuneit H (1985) Fenofibrate treatment inhibits HMG-CoA reductase activity in mononuclear cells from hyperlipoproteinemic patients. Atherosclerosis 56: 257–262PubMedCrossRefGoogle Scholar
  3. 3.
    Frick MH, Elio O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Manninen V, Mäenpää H, Mälkönen M, Mänttäri M, Norola S, Pasternack A, Pikkarainen J, Romo M, Sjöblom T, Nikkilä EA (1987) Helsinki heart study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. N Engl J Med 317: 1237–1245PubMedCrossRefGoogle Scholar
  4. 4.
    McNamara DJ, Davidson NO, Samuel P, Ahrens EH Jr (1980) Cholesterol absorption in man: effect of administration of clofibrate and/or cholestyramine. J Lipid Res 21: 1058–1064PubMedGoogle Scholar
  5. 5.
    Stahlberg D, Angelin B, Einarsson K (1989) Effects of treatment with clofibrate, bezafibrate, and ciprofibrate on the metabolism of cholesterol in rat liver microsomes. J Lipid Res 30: 953–958PubMedGoogle Scholar
  6. 6.
    Schlierf G, Chwat M, Feuerborn E, Wülfinghof E, Heuck CC, Kohlmeier M, Oster P, Stiehl A (1980) Biliary and plasma lipids and lipid-lowering chemotherapy. Atherosclerosis 36: 323–329CrossRefGoogle Scholar
  7. 7.
    Leiss O, Meyer-Krahmer K, Bergmann K von (1986) Biliary lipid secretion in patients with heterozygous familial hypercholesterolemia and combined hyperlipidemia. Influence of bezafibrate and fenofibrate. J Lipid Res 27: 713–723PubMedGoogle Scholar
  8. 8.
    Kaneko I, Hazama-Shimada Y, Kuroda M, Endo A (1977) Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase in cultured L cells by the hypocholesterolemic drug clofibrate. Biochem Biophys Res Commun 76: 1207–1213PubMedCrossRefGoogle Scholar
  9. 9.
    Blasi F, Sommariva D, Cosentini R, Cavaiani B, Fasoli A (1989) Bezafibrate inhibits HMG-CoA reductase activity in incubated blood mononuclear cells from normal subjects and patients with heterozygous familial hypercholesterolaemia. Pharmacol Res 21: 247–254PubMedCrossRefGoogle Scholar
  10. 10.
    White LW (1971) Regulation of hepatic cholesterol biosynthesis by clofibrate administration. J Pharmacol Exp Ther 178: 361–370PubMedGoogle Scholar
  11. 11.
    Berndt J, Gaumert R, Still J (1978) Mode of action of the lipid-lowering agents, clofibrate and BM 15075, on cholesterol biosynthesis in rat liver. Atherosclerosis 30: 147–152PubMedCrossRefGoogle Scholar
  12. 12.
    Stahlberg D, Reihner E, Ewerth S, Einarsson K, Angelin B (1990) Effects of bezafibrane on hepatic cholesterol metabolism. Eur J Clin Pharmacol (this issue)Google Scholar
  13. 13.
    Grundy SM, Ahrens Jr EH, Salen G, Schreibman PH, Nestel PJ (1972) Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J Lipid Res 13: 531–551PubMedGoogle Scholar
  14. 14.
    Wulfert E, Boissard G, Legendre C, Baron C (1981) Inhibition of membrane-bound hepatic 3-hydroxy-3 methylglutaryl CoA reductase as the consequence of altered membrane fluidity. Artery 9: 120–131PubMedGoogle Scholar
  15. 15.
    Cosentini R, Blasi F, Trinchera M, Sommariva D, Fasoli A (1989) Inhibition of cholesterol biosynthesis in freshly isolated blood mononuclear cells from normolipidemic subjects and hypercholesterolemic patients treated with bezafibrate. Atherosclerosis 79: 253–255PubMedCrossRefGoogle Scholar
  16. 16.
    Stange E, Agostini B, Papenberg J (1975) Changes in rabbit lipoprotein properties by dietary cholesterol, and saturated and polyunsaturated fats. Atherosclerosis 22: 125–148PubMedCrossRefGoogle Scholar
  17. 17.
    Stange E, Alavi M, Papenberg J (1977) Changes in metabolic properties of rabbit very low density lipoproteins by dietary cholesterol, and saturated and polyunsaturated fat. Atherosclerosis 28: 1–14PubMedCrossRefGoogle Scholar
  18. 18.
    Goldstein JL, Basu SK, Brown MS (1983) Receptor-mediated endocytosis of LDL in cultured cells. Methods Enzymol 98: 241–260PubMedCrossRefGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265PubMedGoogle Scholar
  20. 20.
    Stewart JM, Packard CJ, Lorimer AR, Boag DE, Shepherd J (1982) Effects of bezafibrate on receptor-mediated and receptor-independent low density lipoprotein catabolism in type II hyperlipoproteinaemic subjects. Atherosclerosis 44: 355–365PubMedCrossRefGoogle Scholar
  21. 21.
    Kleinman Y, Eisenberg S, Oschry Y, Gavish D, Stein O, Stein Y (1985) Defective metabolism of hypertriglyceridemic low density lipoprotein in cultured human skin fibroblasts. J Clin Invest 75: 1796–1803PubMedCrossRefGoogle Scholar
  22. 22.
    Kleinman Y, Schonfeld G, Gavish D, Oschry Y, Eisenberg S (1987) Hypolipidemic therapy modulates expression of apolipoprotein B epitopes on low density lipoproteins. Studies in mild to moderate hypertriglyceridemic patients. J Lipid Res 28: 540–548PubMedGoogle Scholar
  23. 23.
    Stange EF, Dietschy JM (1984) Age-related decreases in tissue sterol acquisition are mediated by changes in cholesterol synthesis and not low density lipoprotein uptake in the rat. J Lipid Res 35: 703–713Google Scholar
  24. 24.
    Young NL, Rodwell VW (1977) Regulation of hydroxymethylglutaryl-CoA reductase in rat leucocytes. J Lipid Res 18: 572PubMedGoogle Scholar
  25. 25.
    McNamara DJ, Davidson NO, Fernandez S (1980) In vitro cholesterol synthesis in freshly isolated mononuclear cells of human blood — effect of in vivo administration of clofibrate and/or cholestryramine. J Lipid Res 21: 65PubMedGoogle Scholar
  26. 26.
    Sundberg EE, Illingworth DR (1983) Effect of hypolipidemic therapy on cholesterol homeostasis in freshly isolated mononuclear cells from patients with heterozygous familial hyperlipoproteinemia. Proc Natl Acad Sci 80: 7631PubMedCrossRefGoogle Scholar
  27. 27.
    Mistry P, Miller NE, Laker M, Hazzard WR, Lewis B (1981) Individual variation in the effects of dietary cholesterol on plasma lipoproteins and cellular cholesterol homeostasis in man. J Clin Invest 67: 493–502PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • E. F. Stange
    • 1
  • M. Frühholz
    • 1
  • M. Osenbrügge
    • 1
  • F. Reimann
    • 1
  • H. Ditschuneit
    • 1
  1. 1.Department of Internal Medicine IIUniversity of UlmUlmFederal Republic of Germany

Personalised recommendations