Advertisement

European Journal of Clinical Pharmacology

, Volume 40, Supplement 1, pp S19–S21 | Cite as

Inhibition of cholesterol absorption by HMG-CoA reductase inhibitor

  • T. A. Miettinen
Article

Summary

In subjects with familial hypercholesterolemia cholesterol absorption efficiency was insignificantly reduced during a short-term more consistently during long-term pravastatin treatment. A cholesterol feeding had no effect on LDL cholesterol level but reduced absorption efficiency during a long-term lovastatin treatment.

Key words

Statins lathosterol methyl sterols cholesterol absorption LDL cholesterol dietary cholesterol 

References

  1. 1.
    Grundy SM (1988) HMG-CoA reductas inhibitors for treatment of hypercholesterolemia. N Engl J Med 319: 24–33PubMedCrossRefGoogle Scholar
  2. 2.
    Grundy SM, Bilheimer DW (1984) Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase by mevinolin in familial hypercholesterolemia heterozygotes: effects on cholesterol balance. Proc Natl Acad Sci USA 81: 2538–2542PubMedCrossRefGoogle Scholar
  3. 3.
    Goldberg IJ, Holleran S, Ramakrishnan R, Palmer RH, Dell RB, Goodman DS (1988) Effect of long-term treatment with lovastatin on the parameters of whole-body cholesterol metabolism. Arteriosclerosis 8: 588 aGoogle Scholar
  4. 4.
    Kempen HJM, Glatz JFC, Gevers Leuven JA, Voort HA van der, Katan MB (1988) Serum lathosterol concentration is an indicator of whole-body cholesterol synthesis in humans. J Lipid Res 29: 1149–1151PubMedGoogle Scholar
  5. 5.
    Miettinen TA (1991) Cholesterol metabolism during hypolipidemic treatment with inhibitors of cholesterol synthesis. 5th European Symposium on Metabolism, Padova. Excerpta Medica Congress Series. Elsevier, Amsterdam (in press).Google Scholar
  6. 6.
    Pappu AS, Illingworth R, Bacon S (1989) Reduction in plasma low-density lipoprotein cholesterol and urinary mevalonic acid by lovastatin in patients with heterozygous familial hypercholesterolemia. Metabolism 38: 542–549PubMedCrossRefGoogle Scholar
  7. 7.
    Ginsberg HN, Le N-A, Short MP, Ramakrishnan R, Desnick RJ (1987) Suppression of apolipoprotein B production during treatment of cholesteryl ester storage disease with lovastatin. J Clin Invest 80: 1692–1697PubMedCrossRefGoogle Scholar
  8. 8.
    Miettinen TA, Kesäniemi YA (1989) Cholesterol absorption: regulation of cholesterol synthesis and elimination and within-population variations of serum cholesterol levels. Am J Clin Nutr 49: 629–635PubMedGoogle Scholar
  9. 9.
    Tilvis RS, Miettinen TA (1980) A lack of esterification of lanosterol and other methyl sterols in human serum in vitro. Scand J Clin Lab Invest 40: 671–674PubMedCrossRefGoogle Scholar
  10. 10.
    Tavani DM, Nes WR, Bilheimer JT (1982) The sterol substrate specificity of acyl CoA:cholesterol acyltransferase from rat liver. J Lipid Res 23: 774–781PubMedGoogle Scholar
  11. 11.
    Nordby G, Norum K (1975) Substrate specificity of lecithin:cholesterol acyltransferase. Esterification of desmosterol, β-sitosterol and cholecalciferol in human plasma. Scand J Clin Lab Invest 35: 677–682PubMedGoogle Scholar
  12. 12.
    Tilvis R, Miettinen TA (1986) Serum plant sterols and their relation to cholesterol absorption. Am J Clin Nutr 43: 92–97PubMedGoogle Scholar
  13. 13.
    Miettinen TA, Tilvis RS, Kesäniemi YA (1989) Serum cholestanol and plant sterol levels in relation to cholesterol metabolism in middle-aged men. Metabolism 38: 136–140PubMedCrossRefGoogle Scholar
  14. 14.
    Miettinen TA, Tilvis RS, Kesäniemi YA (1990) Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in a random male population. Am J Epidemiol 131: 20–31PubMedGoogle Scholar
  15. 15.
    Miettinen TA (1988) Regulation of serum cholesterol by cholesterol absorption. In: Parnham MJ, Niemann R (eds) Cologne Atherosclerosis Conference no.4: Cholesterol-Homeostasis. Birkhäuser, Basel, pp 53–65Google Scholar
  16. 16.
    Miettinen TA, Tikkanen M, Helve E, Ojala JP (1990) Inhibition of dietary cholesterol absorption during lovastatin (Merinolin) treatment. Drug Invest 2 [Suppl 2]: 29–35Google Scholar
  17. 17.
    Miettinen TA (1988) Cholesterol metabolism during ketoconazole treatment. J Lipid Res 29: 43–51PubMedGoogle Scholar
  18. 18.
    Ishida F, Sato A, Iizuka Y, Sawasaki Y, Aizawa A, Kamei T (1988) Effects of MK-733, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, on absorption and excretion of [3H]cholesterol in rabbits. Biochim Biophys Acta 963: 35–41PubMedGoogle Scholar
  19. 19.
    Ishida F, Sato A, Iizuka Y, Kitani K, Sawasaki Y, Kamei T (1989) Effects of MK-733 (simvastatin), an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on intestinal acylcoenzyme A:cholesterol acyltransferase activity in rabbits. Biochim Biophys Acta 1004: 117–123PubMedGoogle Scholar
  20. 20.
    Schroepfer GJ Jr, Christophe A, Needleman DH, Kisic A, Sherrill BC (1987) Inhibitors of sterol synthesis. Dietary administration of 5α-cholest-8(14)-en-3β-ol-15-one inhibits the intestinal absorption of cholesterol in lymph-cannulated rats. Biochem Biophys Res Commun 146: 1003–1008PubMedCrossRefGoogle Scholar
  21. 21.
    Needleman DH, Strong K, Stemke KA, Brabson JS, Kisic A, Schroepfer GJ Jr (1987) Inhibitors of sterol synthesis. Effect of dietary 5α-cholest-8(14)-en-3β-ol-15-one on ACAT activity of jejunal microsomes of the rat. Biochem Biophys Res Commun 148: 920–925PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • T. A. Miettinen
    • 1
  1. 1.Second Department of MedicineUniversity of HelsinkiHelsinkiFinland

Personalised recommendations