Advertisement

Gold Bulletin

, Volume 38, Issue 3, pp 100–106 | Cite as

Surface Plasmon Resonance Tunability in Au−VO2 Thermochromic Nano-composites

  • M. Maaza
  • O. Nemraoui
  • C. Sella
  • A. C. Beye
Open Access
Article

Abstract

A new type of photo-active nano-composite material appropriate for Ultra-fast Nonlinear Optical χ(3) (ω) applications has been synthesized and optically characterized. Compared to standard noble metal particles- oxide nano-composites exhibiting a superior effective χ(3) (ω) due to the enhancement of the local electric field, these Au−VO2 nano-composites display an additional reversibly tunable surface plasmon frequency under external temperature stimuli. Such a smart plasmon tunability is correlated to the Mott’s type semiconducting/metallic 1st order transition of the host VO2 matrix. The nano-gold surface plasmon wavelength shifts reversibly from 645 nm to 598nm when the Au−VO2 nano-composites temperature varies from 25°C to 120°C.

Keywords

Surface Plasmon Resonance Plasmon Resonance Host Matrix Local Electric Field Vanadium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

6 References

  1. 1.
    U. Kriebig and M. Vollmer, in “Optical Properties of Metal Clusters”, Springer, Berlin, 1995Google Scholar
  2. 2.
    D. Feldheim and C. Foss, in “Metal Nanoparticles: synthesis, Characterization, and Applications”, Marcel-Dekker: New York, 2001Google Scholar
  3. 3.
    K. Aslan, J.R. Lakowicz and C.D. Geddes,Anal Biochem. 2004 Jul 1; 330(1), p.145, 2004CrossRefGoogle Scholar
  4. 4.
    F. Carusoa, M.J. Jory, G.W. Bradberry, J.R. Sambles and D.N. Furlong,J. Appl. Phys. 83, 2, p.5, 1998, Hainfeld, J.F. and Furuya, F.R.A.Google Scholar
  5. 5.
    J.F. Hainfeld and F.R.A. Furuya,J. Histochem. Cytochem. 40, p.177, 1992Google Scholar
  6. 6.
    M.J. Jory, P.S. Cann and J.R. Sambles,J. Phys. D: Appl. Phys. 27, p.169, 1994CrossRefGoogle Scholar
  7. 7.
    M.J. Jory, G.W. Bradberry, P.S. Cann and J.R. Sambles,Meas. Sci. Technol. 6, p.1193, 1995CrossRefGoogle Scholar
  8. 8.
    A.V. Nabok, T. Richardson, F. Davis, C.J.M. Stirling,Langmuir.13, p.3198, 1997CrossRefGoogle Scholar
  9. 9.
    D.J. Elliot, D.N. Furlong and F. Grieser,Colloids and Surfaces A. 155, p.101, 1999CrossRefGoogle Scholar
  10. 10.
    V.M. Shalaev,Physics Reports, Vol.272, 2–3, 61, 1996CrossRefGoogle Scholar
  11. 11.
    I. El Kady, R. Biswas, Y. Ye, M.F. Su, I. Uscasu, M. Pralle, E.A. Johnson, J. Daly and A. Greenwald,Photonics and Nanostructures.1, p. 69, 2003CrossRefGoogle Scholar
  12. 12.
    L. Novotny, in “Near Field Optics and Surface Plasmon Polaritons“, S. Kawata, Ed.,Topics in Applied Physics.81, p. 123, Springer, Berlin, 2000Google Scholar
  13. 13.
    B. Sisck, B. Hecht and L. Novotny,Phys. Rev. Letts. 85, p.44782, 2000Google Scholar
  14. 14.
    R. Antoine, B.F. Brevet, H.H. Girault, D. Bethell and D.J. Schiffrin,Chem. Commun. p.1901, 1997Google Scholar
  15. 15.
    R. Antoine, M. Pellarin, B. Palpant, M. Broyer, B. Prevel, P. Galletto, P.F. Brevet and H.H. Girault,J. Appl. Phys. 84, p.4532, 1998CrossRefGoogle Scholar
  16. 16.
    F. Hache, D. Ricard, C. Flytzanis and U. Kriebig,Applied Physics A,47, 347, 1988CrossRefGoogle Scholar
  17. 17.
    D. Ricard, Ph. Roussignol and C. Flytzanis,Optics Letters 10, 511, 1985CrossRefGoogle Scholar
  18. 18.
    C. Flytzanis,Prog. Opt. 29, 2539, 1992Google Scholar
  19. 19.
    O. Levy, D.J. Bergman and D.G. Stroud,Phys. Rev. B. 52, 3184, 1995CrossRefGoogle Scholar
  20. 20.
    I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki and A. Nakamura,J. Appl. Phys. 79, p. 1244, 1996CrossRefGoogle Scholar
  21. 21.
    R.H. Macgruder, L. Yang, R.F. Haglund, C.W. White, L. Li-Yang, R. Dorsinville and R.R. Alfano,Appl. Phys. Lett. 62, p. 1730, 1993CrossRefGoogle Scholar
  22. 22.
    F. Hache, D. Ricard, C. Flytzanis and U. Kreibig,Appl. Phys. A. 47, p.347, 1988CrossRefGoogle Scholar
  23. 23.
    H.B. Liao, R.F. Xiao, J.S. Fu, P. Yu, G.K.L. Wong and P. Sheng,Appl. Phys. Lett. 70, p. 1, 1997CrossRefGoogle Scholar
  24. 24.
    24 J. Venturini, PhD Thesis,University of Paris VI, 16th December 1999, p.185, 1999Google Scholar
  25. 25.
    H.B. Liao, R.F. Xiao, J.S. Fu, P. Yu and G.K.L. Wong,Appl. Phys. B. 65, p. 673, 1997CrossRefGoogle Scholar
  26. 26.
    H.B. Liao, R.F. Xiao, J.S. Fu, H. Wong, K.S. Wong and G.K.L. Wong,Appl. Phys. Lett. 72, p. 1817, 1998CrossRefGoogle Scholar
  27. 27.
    K. Fukumi, A. Chayahara, K. Kanado, T. Sakagushi, Y. Horino, M. Miya, J. Hayakawa and M. Satou,Jap.J. Appl. Phys. 30, p.742, 1990CrossRefGoogle Scholar
  28. 28.
    K. Fukumi, A. Chayahara, K. Kanado, T. Sakagushi, Y. Horino, M. Miya, K. Fuji, J. Hayakawa and M. Satou,J. Appl. Phys. 75, p. 3075, 1994CrossRefGoogle Scholar
  29. 29.
    D. Ricard, P. Roussignol and C. Flytzanis,Opt. Lett. 10, p. 511, 1985CrossRefGoogle Scholar
  30. 30.
    L. Yang, D.H. Osborne, R.F Haglund, R.H. Macgruder, C.W. White, R.A. Zuhr and H. Hosono,Appl. Phys. A. 62, p. 403, 1996CrossRefGoogle Scholar
  31. 31.
    S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki and A. Nakamura,Jpn. J. Appl. Phys. 33, p. 331, 1994CrossRefGoogle Scholar
  32. 32.
    K. Puech and W. Blau,Opt. Lett. 20, p. 1613, 1995CrossRefGoogle Scholar
  33. 33.
    J.B. Pendry, A.J. Holden, W.J. Stewart and I. Youngs,Phys. Rev. Lett. 76, 25, 4773, 1996CrossRefGoogle Scholar
  34. 34.
    D.C. Skillman and C.R. Berry,J. Phys. Chem. 48, 7, 3297, 1967Google Scholar
  35. 35.
    S. Schiestel, C.M. Cotell, C.A. Carosella, K.S. Grabowski G.K. Hubler,Nucl. Instrum. Meths. Phys. Res. B. 127–128, 566, 1997CrossRefGoogle Scholar
  36. 36.
    E.T. Jensen, R.E. Palmer, W. Allison and J.F. Annett,Phys. Rev. Lett. 66, 492, 1991CrossRefGoogle Scholar
  37. 37.
    S.J. Oldenburg, R.D. Averritt, S.L. Westcot and N.J. Hals,J. Phys. Chem. Lett. 288, p. 243, 1998CrossRefGoogle Scholar
  38. 38.
    A.J. Bosman and E.E. Havinga,Phys. Rev. 129, p. 1593, 1963CrossRefGoogle Scholar
  39. 39.
    M.E. Thomas and R.I. Joseph,Infrared Optical Materials, Proc. SPIE 929, p. 87, 1988Google Scholar
  40. 40.
    F.J. Morin,Phys. Rev. Lett. 3, 34, 1959CrossRefGoogle Scholar
  41. 41.
    G.J. Hill and H.R. Martin,Phys. Rev. Lett. A. 27, 34, 1968Google Scholar
  42. 42.
    P.P. Edwards, P.V. Ramakrishnan and C.N.R. Rao, in “Metal-Insulator Transitions Revisited”, Eds. P.P. Edwards and C.N.R. Rao, Taylor and Francis, 1995Google Scholar
  43. 43.
    N. Mott, in “Metal-Insulator Transitions”, Taylor and Francis, London “1997”Google Scholar
  44. 44.
    H.W. Verleur, A.S. Barker Jr. and C.N. Berglund,Phys. Rev. 17 2(1), 788, 1968CrossRefGoogle Scholar
  45. 45.
    M.F. Becker, A.B. Buckman, R.W. Walser, Th. Lepine, P. George and A. Brun,Appl. Phys. Lett. 65 (12), 150, 1996Google Scholar
  46. 46.
    A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget and J.C. Kieffer,Phys. Rev. Lett. 87, 23, p.237, 2001CrossRefGoogle Scholar
  47. 47.
    R. Lopez, T.E. Haynes, L.A. Boatner, L.C. Feldman and R.F. Haglund Jr.,Phys. Rev. B. 65, p. 224113, 2002CrossRefGoogle Scholar
  48. 48.
    R. Lopez, T.E. Haynes, L.A. Boatner, L.C. Feldman and R.F. Haglund Jr.,Optics Lett. 27, p.1327, 2002CrossRefGoogle Scholar
  49. 49.
    G.I. Petrov, V.V. Yakovlev and J.A. Squier,Optics Letts. 27, Iss. 8, p.655, 2002CrossRefGoogle Scholar
  50. 50.
    M. Maaza, K. Bouziane, J. Maritz, D.S. McLachlan, R. Swanepoel, J.M. Frogerio and M. Every,Optical Materials 15, 41, 2000CrossRefGoogle Scholar
  51. 51.
    M. Maaza, O. Nemraoui, C. Sella, G. Hearne, A.C. Beye and B. Baruch-Barak,To Appear in Optics Communications, 2004Google Scholar
  52. 52.
    A. Takami, H. Kurita and S. Koda,J. Phys. Chem. B. 103, p. 1226, 1999CrossRefGoogle Scholar
  53. 53.
    K. Kurihara, J. Kizling, P. Stenius and J.H. Fendler,J. Am. Chem. Soc. 105, p. 2574, 1983CrossRefGoogle Scholar
  54. 54.
    T.S. Ahmadi, S.L. Logunov and M. El-Sayed,J. Phys. Chem. 100, p. 8053, 1996CrossRefGoogle Scholar
  55. 55.
    A.S. Barker, H.W. Verler and H.J. Gugenheim,Phys. Rev. Lett. 17, p. 1286, 1966CrossRefGoogle Scholar
  56. 56.
    Gmelein Handbuch, Vol. 16, Section Vanadium Oxides, p. 482Google Scholar
  57. 57.
    M. Maaza, C. Sella, O. Nemraoui, N. Renard and Y. Sampeur,Surface and Coating Technology. Vol. 97, Iss. 1–3, 1997Google Scholar
  58. 58.
    W. Haidinger and D. Gross,Thin Solid Films 12, 433, 1972CrossRefGoogle Scholar
  59. 59.
    D. Adler, in “Solid. State Physics“, Eds. F. Seitz and D. Turnbull and H. Ehrenreich, Academic Press, New York and London, Vol. 21, 1, 1968.Google Scholar
  60. 60.
    K.A. Khan, G.A. Niklasson and C.G. Granqvist,J. Appl. Phys. 64(6), 3327, 1988CrossRefGoogle Scholar

Copyright information

© World Gold Council 2005

Authors and Affiliations

  1. 1.Nanosciences LaboratoriesMaterials Research Group, iThemba LABSSomerset WestSouth Africa
  2. 2.Physics Dept.Rand Afrikaans UniversityJohannesburgSouth Africa
  3. 3.Laboratoire d’Optique des SolidesUniversite Pierre-Marie CurieParis CedexFrance
  4. 4.Princeton Materials InstitutePrinceton UniversityPrincetonUSA

Personalised recommendations