Advertisement

Gold Bulletin

, Volume 43, Issue 4, pp 334–344 | Cite as

Investigation of the active site and the mode of Au/TiO2 catalyst deactivation using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)

  • M. Raphulu
  • J. McPherson
  • E. van der Lingen
  • J. A. Anderson
  • M. S. Scurrell
Open Access
Article

Abstract

CO is a useful probe in the characterization of surface properties of both metal and metal oxide via adsorption. Adsorption of CO was used to monitor the possible active site of an Au/TiO2 catalyst for the CO oxidation reaction. CO adsorption on the reduced catalyst results in the band at 2104 cm−1 indicative of Au0. During the reaction (in the presence of both CO and O2 present) the band is shifted to higher wave numbers indicating non-competitive adsorption on the surface of Au species. This study also reveals the relationship between the presence of CO (in the absence of oxygen) and the build-up of surface species such as bicarbonates, formates and carbonate species which decreases the activity of the catalyst. The presence of both the reduced and the cationic species of Au seem to be requirement for the activity of the catalyst.

Keywords

DRIFTS gold titania oxygen carbon monoxide carbonates bicarbonates 

References

  1. 1.
    1 R. Zanella, S. Giorgio, C.-H. Shin, C.R. Henry, C. Louis,J. Catal. 222 (2004) 357CrossRefGoogle Scholar
  2. 2.
    M. Haruta,Chem. Record. 3 (2003) 75CrossRefGoogle Scholar
  3. 3.
    C.K. Costello, M.C. Kung, H.-S. Oh, Y. Wang, H.H. Kung,Appl. Catal. A: 232 (2002) 159CrossRefGoogle Scholar
  4. 4.
    J.M.C. Soares, P. Morrall, A. Crossley, P. Harris, M. Bowker,J. Catal. 219 (2003) 17CrossRefGoogle Scholar
  5. 5.
    R.M. Finch, N.A. Hodge, G.J. Hutchings, A. Meagher, Q.A. Pankhurst, M. Rafiq, H. Siddiqui, F.E. Wagner, R. Whyman,PCCP. 1 (1999) 485Google Scholar
  6. 6.
    E.D. Park and J.S. Lee,J. Catal. 186 (1999) 1CrossRefGoogle Scholar
  7. 7.
    J. Guzman and B. Gates,J. Phys. Chem. B: 106 (2002) 7659CrossRefGoogle Scholar
  8. 8.
    A. Visco, A. Donato, C. Milone, S. Galvagno,Reac. Kinet. Catal. Lett. 61 (1997) 219CrossRefGoogle Scholar
  9. 9.
    J. Yang, J. Henao, M.C. Raphulu, Y. Wang, T. Caputo, A. Groszek, M.C. Kung, M.S. Scurrell, T.J. Miller, H. Kung,J. Phys. Chem. B. 109 (2005) 10319CrossRefGoogle Scholar
  10. 10.
    L. Fu, N. Wu, J. Yang, F. Qu, D. Johnson, M.C. Kung, H. Kung, and V. Dravid,J. Phys. Chem. B. 109 (2005) 3704CrossRefGoogle Scholar
  11. 11.
    11 P. Konova, A. Naydenov, D. Venkov, D. Mehandjiev, D. Andreeva, T. Tabakova,J. Mol. Catal. A 213 (2004) 235CrossRefGoogle Scholar
  12. 12.
    M. Manzoli, A. Chiorino, F. Boccuzzi,Appl. Catal. B. 52 (2004) 259CrossRefGoogle Scholar
  13. 13.
    B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, R. Behm,J. Catal. 224 (2004) 449CrossRefGoogle Scholar
  14. 14.
    M. Schubert, A. Venugopal, M. Kahlich, V. Plzak, R. Behm,J. Catal. 22 (2004) 32CrossRefGoogle Scholar
  15. 15.
    S. Daniells, A. Overweg, M. Makkee, J. Moulijn,J. Catal. 230 (2005) 52CrossRefGoogle Scholar
  16. 16.
    Y. Denkwitz, A. Karpenko, V. Plazk, R. Leppelt, B. Schumacher, R. Behm,J. Catal.,246 (2007) 74CrossRefGoogle Scholar
  17. 17.
    V. Schwartz, D. Mullins, W. Yan, B. Chen, S. Dai, S. Overbury,J. Phys Chem B 108 (2004) 15782CrossRefGoogle Scholar
  18. 18.
    J.C. Clark, S. Dai, H. Overbury,Catal. Today 126 (2006) 135CrossRefGoogle Scholar
  19. 19.
    F. Boccuzzi, A. Chiorino, M. Manzoli,Surf. Sci. 942 (2000) 454Google Scholar
  20. 20.
    F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, M. Haruta,J. Catal. 202 (2001) 256CrossRefGoogle Scholar
  21. 21.
    21 M. Manzoli, F. Boccuzzi, A. Chiorino, F. Vindigni, W. Deng, M. Flytzani-Stephanopoulos,J. Catal.,245 (2007) 306CrossRefGoogle Scholar
  22. 22.
    P. Pyykkö,Chem. Rev.,88 (1988) 563CrossRefGoogle Scholar
  23. 23.
    P. Schwendtfeger, W.H.E. Schwarz, G.A. Bowmaker, P.D.W. Boyd,J. Chem. Phys.,91 (1989) 1752Google Scholar
  24. 24.
    G.C. Bond, C. Louis, D.T. Thompson,Catalysis by Gold, Catalytic Sceince Series, vol. 6, Imperial College Press, London, 2006, pp. 150–152CrossRefGoogle Scholar
  25. 25.
    M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon,J. Catal.,144 (1993) 175CrossRefGoogle Scholar
  26. 26.
    B-K. Chang, B. Jang, S. Dai, S. Overbury,J. Catal. 236 (2005) 392CrossRefGoogle Scholar
  27. 27.
    A. Karpenko, R. Leppelt, V. Plzak, J. Cai, A. Chuvilin, B. Schumacher, U. Kaiser, R.J. Behm,Top. Catal. 44 (2007) 183CrossRefGoogle Scholar
  28. 28.
    Y. Hao, M. Mihaylov, E. Ivanova, K. Hadjiivanov, H. Knözinger, B.C. Gates,J. Catal. 261 (2009) 137CrossRefGoogle Scholar
  29. 29.
    A. Debeila, M.C. Raphulu, E. Mokoena, M. Avalos, V. Petronovskii, N.J. Coville, M.S. Scurrell,Mater. Sci. Engng A 396 (2005) 61CrossRefGoogle Scholar
  30. 30.
    A. Debeila, M.C. Raphulu, E. Mokoena, M. Avalos, V. Petronovskii, N.J. Coville, M.S. Scurrell,Mater. Sci. Engng A 396 (2005) 70CrossRefGoogle Scholar

Copyright information

© World Gold Council 2010

Authors and Affiliations

  • M. Raphulu
    • 1
    • 2
    • 3
  • J. McPherson
    • 1
  • E. van der Lingen
    • 1
  • J. A. Anderson
    • 2
  • M. S. Scurrell
    • 3
  1. 1.Advanced Materials DivisionMintekRSA
  2. 2.Department of Chemistry, Kings CollegeUniversity of AberdeenScotlandUK
  3. 3.Molecular Sciences InstituteSchool of ChemistryWitsRSA

Personalised recommendations